Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Cell Physiol ; 236(7): 5253-5264, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33368314

RESUMO

Hypercholesterolemia has been found to be closely linked with a significant increase in both cancer incidence and mortality. However, the exact correlation between serum cholesterol levels and cancer has not been completely deciphered. Here we analyzed the effect of low-density lipoprotein (LDL) cholesterol on prostate and pancreatic cancer cells. We noted that LDL induced a substantial STAT3 activation and JAK1, JAK2, Src activation in diverse prostate and pancreatic tumor cells. Moreover, LDL promoted cancer cell proliferation, migration, and invasion as well as upregulated the expression of diverse oncogenic gene products. However, deletion of LDL-activated STAT3 in LNCaP and PANC-1 cells and reduced LDL-induced cell viability. Simvastatin (SV) treatment also alleviated LDL-induced cell viability and migration ability in both the prostate and pancreatic tumor cells. These results demonstrate that LDL-induced STAT3 activation may exert a profound effect on the proliferation and survival of tumor cells.


Assuntos
Carcinogênese/patologia , LDL-Colesterol/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias da Próstata/patologia , Fator de Transcrição STAT3/metabolismo , Anticolesterolemiantes/farmacologia , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Janus Quinase 1/metabolismo , Janus Quinase 2/metabolismo , Masculino , Pâncreas/citologia , Pâncreas/crescimento & desenvolvimento , Pâncreas/patologia , Próstata/citologia , Próstata/crescimento & desenvolvimento , Próstata/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais/fisiologia , Sinvastatina/farmacologia
2.
J Cell Physiol ; 234(10): 18249-18261, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30851074

RESUMO

Epidemiological evidence suggests that obesity can significantly increase the risk of various cancers, although the mechanisms underlying this link are completely unknown. Here, we analyzed the effect of adipocytes on melanoma and colon cancer cells proliferation, migration, and invasion. The potential effects of conditioned media (CM) obtained from differentiated mouse 3T3-L1 cells and human adipose tissue-derived mesenchymal stem cells (hAMSC) on the proliferation, migration, and invasion of B16BL6 melanoma and colon 26-L5 cancer cells were investigated. The 3T3-L1 and hAMSC CM increased cell proliferation, migration, and invasion in both the cell lines. In addition, adipocytes CM increased matrix metalloproteinase 9 (MMP-9) and MMP-2 activity in both B16BL6 and colon 26-L5 cells. These effects were found to be associated with an increased expression of various oncogenic proteins in B16BL6 and colon 26-L5 cells. Also, adipocyte CM induced Akt and mTOR activation in both tumor cell lines, and the pharmacological inhibition of Akt and mTOR blocked the CM induced Akt as well as mTOR activation and CM-stimulated melanoma and colon cancer cell proliferation, migration, and invasion. These data suggest that adipocyte promotes melanoma and colon cancer progression through modulating the expression of diverse proteins associated with cancer growth and metastasis as well as modulation of the Akt/mTOR signaling.


Assuntos
Adipócitos/patologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Neoplasias Colorretais/patologia , Meios de Cultivo Condicionados/metabolismo , Melanoma Experimental/patologia , Invasividade Neoplásica/patologia , Células 3T3-L1 , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias Colorretais/metabolismo , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Melanoma Experimental/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismo
3.
J Cell Biochem ; 120(6): 9787-9798, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30520154

RESUMO

Casticin (CTC), one of the major components of Vitex rotundifolia L., has been reported to exert significant beneficial pharmacological activities and can function as an antiprolactin, anticancer, anti-inflammatory, neuroprotective, analgesic, and immunomodulatory agent. This study aimed at investigating whether the proapoptotic effects of CTC may be mediated through the abrogation of signal transducers and activators of transcription-3 (STAT3) signaling pathway in a variety of human tumor cells. We found that CTC significantly decreased cell viability in a concentration-dependent manner and suppressed cell proliferation in 786-O, YD-8, and HN-9 cells. CTC also induced programmed cell death that was found to be mediated via caspase-3 activation and induction of poly(ADP-ribose) polymerase cleavage. Interestingly, CTC repressed both constitutive and interleukin-6-induced STAT3 activation in 786-O and YD-8 cells but only affected constitutive STAT3 phosphorylation in HN-9 cells. Moreover, CTC could potentiate ionizing radiation-induced apoptotic effects leading to the downregulation of STAT3 activation and thus may be used in combination with radiation against diverse malignancies.


Assuntos
Apoptose , Flavonoides/farmacologia , Tolerância a Radiação , Radiação Ionizante , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Humanos , Tolerância a Radiação/efeitos dos fármacos , Tolerância a Radiação/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
4.
Phytother Res ; 33(7): 1934-1942, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31172618

RESUMO

Theacrine, a purine alkaloid structurally similar to caffeine, has recently become of interest as a potential therapeutic compound. Here, we investigated the antimetastatic potential of theacrine on human breast cancer MDA-MB-231 cells. We observed that theacrine can reverse epithelial-to-mesenchymal transition (EMT), which resulted in a decrease in the levels of mesenchymal markers (Fibronectin, Vimentin, N-cadherin, Twist, and Snail) and an increase in the levels of epithelial markers (Occludin and E-cadherin) in the cells. Additionally, theacrine attenuates TGF-ß-induced EMT, cell adhesion, migration, and invasion in MDA-MB-231 cells. Overall, our results suggest that theacrine may inhibit the breast cancer cell metastasis by reversing the EMT process.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ácido Úrico/análogos & derivados , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Fibronectinas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Proteína 1 Relacionada a Twist/metabolismo , Ácido Úrico/farmacologia , Vimentina/metabolismo
5.
Molecules ; 24(8)2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31013639

RESUMO

The epithelial-mesenchymal transition (EMT) is a phenomenon that facilitates epithelial cells to acquire invasive potential to induce the initiation the metastatic spread of tumor cells. Here, we determined if brassinin (BSN) can affect the EMT process and deciphered its anti-cancer effects. BSN attenuated the levels of EMT linked genes and suppressed transforming growth factor beta (TGF-ß)-mediated regulation of diverse mesenchymal markers. Additionally, BSN did increase the expression of various epithelial marker proteins in lung cancer cells. TGF-ß-induced morphological changes and induction of invasive ability of tumor cells was also found to be abrogated by BSN treatment. Finally, BSN not only suppressed constitutive, but also inducible phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) phosphorylation in tumor cells.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Indóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Tiocarbamatos/farmacologia , Células A549 , Humanos , Neoplasias Pulmonares/patologia
6.
Int J Mol Sci ; 19(12)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558157

RESUMO

Cancer still remains one of the leading causes of death worldwide. In spite of significant advances in treatment options and the advent of novel targeted therapies, there still remains an unmet need for the identification of novel pharmacological agents for cancer therapy. This has led to several studies evaluating the possible application of natural agents found in vegetables, fruits, or plant-derived products that may be useful for cancer treatment. Bergamottin is a furanocoumarin derived from grapefruits and is also a well-known cytochrome P450 inhibitor. Recent studies have demonstrated potent anti-oxidative, anti-inflammatory, and anti-cancer properties of grapefruit furanocoumarin both in vitro and in vivo. The present review focuses on the potential anti-neoplastic effects of bergamottin in different tumor models and briefly describes the molecular targets affected by this agent.


Assuntos
Inibidores das Enzimas do Citocromo P-450/uso terapêutico , Furocumarinas/uso terapêutico , Neoplasias/terapia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citrus paradisi/química , Inibidores das Enzimas do Citocromo P-450/química , Inibidores das Enzimas do Citocromo P-450/farmacologia , Furocumarinas/química , Furocumarinas/farmacologia , Humanos , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos
7.
Molecules ; 23(7)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-30004418

RESUMO

Bergamottin (BGM) is a naturally occurring furanocoumarin and is known to inhibit the growth of tumor cells. However, there is no available evidence that BGM has an inhibitory effect on cancer metastasis, specifically on the epithelial-to-mesenchymal transition (EMT) process in the malignant cells. Here we aimed to evaluate the antimetastatic potential of BGM in human lung adenocarcinoma cells. Our results demonstrate that BGM can block EMT, and observed inhibition was accompanied by downregulation of fibronectin, vimentin, N-cadherin, twist and snail expression, and upregulation of occludin and E-cadherin. Interestingly, transforming growth factor-ß (TGF-ß)-induced upregulation of fibronectin, vimentin, N-cadherin, twist and snail, and downregulation of occludin and E-cadherin, were abrogated by BGM treatment. Moreover, the treatment of BGM repressed TGF-ß-induced cell invasive potential. BGM treatment also inhibited multiple oncogenic cascades such as PI3K/Akt/mTOR. Overall, the results demonstrate the potential antimetastatic activity of BGM against lung cancer cells.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Furocumarinas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Metástase Neoplásica/tratamento farmacológico , Oncogenes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células A549 , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Invasividade Neoplásica/prevenção & controle , Regulação para Cima/efeitos dos fármacos
8.
Molecules ; 23(3)2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29522451

RESUMO

Embelin is a naturally-occurring benzoquinone compound that has been shown to possess many biological properties relevant to human cancer prevention and treatment, and increasing evidence indicates that embelin may modulate various characteristic hallmarks of tumor cells. This review summarizes the information related to the various oncogenic pathways that mediate embelin-induced cell death in multiple cancer cells. The mechanisms of the action of embelin are numerous, and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and modulate the NF-κB, p53, PI3K/AKT, and STAT3 signaling pathways. Embelin also induces autophagy in cancer cells; however, these autophagic cell-death mechanisms of embelin have been less reported than the apoptotic ones. Recently, several autophagy-inducing agents have been used in the treatment of different human cancers, although they require further exploration before being transferred from the bench to the clinic. Therefore, embelin could be used as a potential agent for cancer therapy.


Assuntos
Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia , Benzoquinonas/química , Produtos Biológicos/química , Sinergismo Farmacológico , Humanos , Neoplasias/metabolismo , Oxirredução/efeitos dos fármacos , Transdução de Sinais
9.
J Cell Physiol ; 232(2): 346-354, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27177359

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a critical cellular phenomenon regulating tumor metastases. In the present study, we investigated whether ginkgolic acid can affect EMT in lung cancer cells and the related underlying mechanism(s) of its actions. We found that ginkgolic acid C15:1 (GA C15:1) inhibited cell proliferation, invasion, and migration in both A549 and H1299 lung cancer cells. GA C15:1 also suppressed the expression of EMT related genes (Fibronectin, Vimentin, N-cadherin, MMP-9, MMP-2, Twist and Snail) and suppressed TGF-ß-induced EMT as assessed by reduced expression of mesenchymal markers (Fibronectin, Vimentin, N-cadherin), MMP-9, MMP-2, Twist and Snail. However, GA C15:1 did not affect the expression of various epithelial marker proteins (Occludin and E-cadherin) in both A549 and H1299 cells. TGF-ß-induced morphologic changes from epithelial to mesenchymal cells and induction of invasion and migration were reversed by GA C15:1. Finally, GA C15:1 not only abrogated basal PI3K/Akt/mTOR signaling cascade, but also reduced TGF-ß-induced phosphorylation of PI3K/Akt/mTOR pathway in lung cancer cells. Overall, these findings suggest that GA C15:1 suppresses lung cancer invasion and migration through the inhibition of PI3K/Akt/mTOR signaling pathway and provide a source of potential therapeutic compounds to control the metastatic dissemination of tumor cells. J. Cell. Physiol. 232: 346-354, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Salicilatos/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Salicilatos/química , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
10.
Phytother Res ; 31(7): 1078-1089, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28544385

RESUMO

Although application of sorafenib in the treatment of human renal cell carcinoma (RCC) remains one of the best examples of successful targeted therapy, majority of RCC patients suffer from its side effects as well as develop resistance to this targeted therapy. Thus, there is a need to promote novel alternative therapies for the treatment of RCC. In this study, we investigated whether Korean red ginseng extract (KRGE) could inhibit the proliferation and induce chemosensitization in human renal cancer cells. Also, we used a human phospho-antibody array containing 46 antibodies against signaling molecules to examine a subset of phosphorylation events after KRGE and sorafenib combination treatment. Korean red ginseng extract suppressed the proliferation of two RCC cell lines; activated caspase-3; caused poly(ADP-ribose) polymerase cleavage; abrogated the expression of B-cell lymphoma 2, B-cell lymphoma extra large, survivin, inhibitors of apoptosis proteins-1/2, cyclooxygenase-2, cyclin D1, matrix metallopeptidase-9, and vascular endothelial growth factor; and upregulated pro-apoptotic gene products. Interestingly, KRGE enhanced the cytotoxic and apoptotic effects of sorafenib in RCC cells. The combination treatment of KRGE and sorafenib more clearly suppressed cyclic adenosine monophosphate response element-binding protein and c-Jun phosphorylation and induced phosphorylation of p53 than did the individual treatment regimen. Our results clearly demonstrate that KRGE can enhance the anticancer activity of sorafenib and may have a substantial potential in the treatment of RCC. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Niacinamida/análogos & derivados , Panax/química , Compostos de Fenilureia/farmacologia , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Humanos , Niacinamida/farmacologia , Fosforilação , Sorafenibe , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Int J Mol Sci ; 18(12)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194365

RESUMO

Abstract: Natural product compounds have recently attracted significant attention from the scientific community for their potent effects against inflammation-driven diseases, including cancer. A significant amount of research, including preclinical, clinical, and epidemiological studies, has indicated that dietary consumption of polyphenols, found at high levels in cereals, pulses, vegetables, and fruits, may prevent the evolution of an array of diseases, including cancer. Cancer development is a carefully orchestrated progression where normal cells acquires mutations in their genetic makeup, which cause the cells to continuously grow, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Compounds that modulate these oncogenic processes can be considered as potential anti-cancer agents that may ultimately make it to clinical application. Resveratrol, a natural stilbene and a non-flavonoid polyphenol, is a phytoestrogen that possesses anti-oxidant, anti-inflammatory, cardioprotective, and anti-cancer properties. It has been reported that resveratrol can reverse multidrug resistance in cancer cells, and, when used in combination with clinically used drugs, it can sensitize cancer cells to standard chemotherapeutic agents. Several novel analogs of resveratrol have been developed with improved anti-cancer activity, bioavailability, and pharmacokinetic profile. The current focus of this review is resveratrol's in vivo and in vitro effects in a variety of cancers, and intracellular molecular targets modulated by this polyphenol. This is also accompanied by a comprehensive update of the various clinical trials that have demonstrated it to be a promising therapeutic and chemopreventive agent.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias/tratamento farmacológico , Estilbenos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Neoplasias/genética , Resveratrol , Estilbenos/farmacologia
12.
Int J Mol Sci ; 18(5)2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28534824

RESUMO

Isorhynchophylline (Rhy) is an active pharmacological component of Uncaria rhynchophylla that has been reported previously to exert significant antihypertensive and neuroprotective effects. However, very little is known about its potential anti-cancer activities. This study was carried out to evaluate the anticancer effects of Rhy against various human carcinoma cell lines. We found that Rhy exhibited substantial cytotoxic effect against human hepatocellular carcinoma HepG2 cells when compared with other human carcinoma cell lines including those of lung, pancreas, prostate, head and neck, breast, multiple myeloma, brain and renal cell carcinoma. Rhy induced apoptosis as characterized by accumulation of cells in sub G1 phase; positive Annexin V binding; activation of caspase-8, -9, and -3; and cleavage of PARP (poly-ADP ribose polymerase). This effect of Rhy correlated with the down-regulation of various proteins that mediated cell proliferation, cell survival, metastasis, and angiogenesis. Moreover, cell proliferation, migration, and constitutive CXCR4 (C-X-C chemokine receptor type 4), MMP-9 (Matrix metallopeptidase-9), and MMP-2 expression were inhibited upon Rhy treatment. We further investigated the effect of Rhy on the oncogenic cell signaling cascades through phospho-kinase array profiling assay. Rhy was found to abrogate phospho-p38, ERK, JNK, CREB, c-Jun, Akt, and STAT3 signals, but interestingly enhanced phospho-p53 signal. Overall, our results indicate, for the first time, that Rhy could exert anticancer and anti-metastatic effects through regulation of multiple signaling cascades in hepatocellular carcinoma cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Alcaloides Indólicos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos Fitogênicos/química , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Alcaloides Indólicos/química , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metástase Neoplásica/patologia , Metástase Neoplásica/prevenção & controle , Oxindóis , Uncaria/química
13.
Molecules ; 22(7)2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28696369

RESUMO

2,5-Dihydroxyacetophenone (DHAP) is an active compound obtained from Radix rehmanniae preparata, which is widely used as a herbal medicine in many Asian countries. DHAP has been found to possess anti-inflammatory, anti-anxiety, and neuroprotective qualities. For the present study, we evaluated the anti-cancer effects of DHAP on multiple myeloma cells. It was discovered that DHAP downregulated the expression of oncogenic gene products like Bcl-xl, Bcl-2, Mcl-1, Survivin, Cyclin D1, IAP-1, Cyclin E, COX-2, and MMP-9, and upregulated the expression of Bax and p21 proteins, consistent with the induction of G2/M phase cell cycle arrest and apoptosis in U266 cells. DHAP inhibited cell proliferation and induced apoptosis, as characterized by the cleavage of PARP and the activation of caspase-3, caspase-8, and caspase-9. Mitogen-activated protein kinase (MAPK) pathways have been linked to the modulation of the angiogenesis, proliferation, metastasis, and invasion of tumors. We therefore attempted to determine the effect of DHAP on MAPK signaling pathways, and discovered that DHAP treatment induced a sustained activation of JNK, ERK1/2, and p38 MAPKs. DHAP also potentiated the pro-apoptotic and anti-proliferative effects of bortezomib in U266 cells. Our results suggest that DHAP can be an effective therapeutic agent to target multiple myeloma.


Assuntos
Acetofenonas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Mieloma Múltiplo/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Expressão Gênica , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo
14.
Molecules ; 22(2)2017 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-28208828

RESUMO

Ginkgolic acid C 17:1 (GAC 17:1) extracted from Ginkgo biloba leaves, has been previously reported to exhibit diverse antitumor effect(s) through modulation of several molecular targets in tumor cells, however the detailed mechanism(s) of its actions still remains to be elucidated. Signal transducer and activator of transcription 3 (STAT3) is an oncogenic transcription factor that regulates various critical functions involved in progression of diverse hematological malignancies, including multiple myeloma, therefore attenuating STAT3 activation may have a potential in cancer therapy. We determined the anti-tumor mechanism of GAC 17:1 with respect to its effect on STAT3 signaling pathway in multiple myeloma cell lines. We found that GAC 17:1 can inhibit constitutive activation of STAT3 through the abrogation of upstream JAK2, Src but not of JAK1 kinases in U266 cells and also found that GAC can suppress IL-6-induced STAT3 phosphorylation in MM.1S cells. Treatment of protein tyrosine phosphatase (PTP) inhibitor blocked suppression of STAT3 phosphorylation by GAC 17:1, thereby indicating a critical role for a PTP. We also demonstrate that GAC 17:1 can induce the substantial expression of PTEN and SHP-1 at both protein and mRNA level. Further, deletion of PTEN and SHP-1 genes by siRNA can repress the induction of PTEN and SHP-1, as well as abolished the inhibitory effect of drug on STAT3 phosphorylation. GAC 17:1 down-regulated the expression of STAT3 regulated gene products and induced apoptosis of tumor cells. Overall, GAC 17:1 was found to abrogate STAT3 signaling pathway and thus exert its anticancer effects against multiple myeloma cells.


Assuntos
Ginkgo biloba/química , PTEN Fosfo-Hidrolase/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/química , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fator de Transcrição STAT3/agonistas , Salicilatos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Ligação Proteica , Salicilatos/química
15.
Phytother Res ; 30(4): 567-76, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27059688

RESUMO

Ginkgetin, a biflavone from Ginkgo biloba leaves, is known to exhibit antiinflammatory, antifungal, neuroprotective, and antitumor activities, but its precise mechanism of action has not been fully elucidated. Because the aberrant activation of STAT3 has been linked with regulation of inflammation, proliferation, invasion, and metastasis of tumors, we hypothesized that ginkgetin modulates the activation of STAT3 in tumor cells. We found that ginkgetin clearly suppressed constitutive phosphorylation of STAT3 through inhibition of the activation of upstream JAK1 and c-Src kinases and nuclear translocation of STAT3 on both A549 and FaDu cells. Treatment with sodium pervanadate reversed the ginkgetin-induced down-modulation of STAT3, thereby indicating a critical role for a PTP. We also found that ginkgetin strongly induced the expression of the SHP-1 and PTEN proteins and its mRNAs. Further, deletion of SHP-1 and PTEN genes by siRNA suppressed the induction of SHP-1 and PTEN, and reversed the inhibition of STAT3 activation. Ginkgetin induced apoptosis as characterized by an increased accumulation of cells in subG1 phase, positive Annexin V binding, loss of mitochondrial membrane potential, down-regulation of STAT3-regulated gene products, and cleavage of PARP. Overall, ginkgetin abrogates STAT3 signaling pathway through induction of SHP-1 and PTEN proteins, thus attenuating STAT3 phosphorylation and tumorigenesis.


Assuntos
Apoptose/efeitos dos fármacos , Biflavonoides/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Proteína Tirosina Quinase CSK , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Humanos , Janus Quinase 1/metabolismo , Fosforilação , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismo
16.
Phytother Res ; 30(6): 1021-32, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27030214

RESUMO

Embelin (EB) is a benzoquinone derivative isolated from Embelia ribes Burm plant. Recent scientific evidence shows that EB induces apoptosis and inhibits migration and invasion in highly metastatic human breast cancer cells. However, the exact mechanisms of EB in tumor metastasis and invasion have not been fully elucidated. Here, we investigated the underlying mechanisms of antimetastatic activities of EB in breast cancer cells. The EB downregulated the chemokine receptor 4 (CXCR4) as well as matrix metalloproteinase (MMP)-9/2 expression and upregulated the tissue inhibitor of metalloproteinase 1 expression in MDA-MB-231 cells under noncytotoxic concentrations but not in MCF-7 cells. Additionally, EB inhibited the CXC motif chemokine ligand 12 induced invasion and migration activities of MDA-MB-231 cells. A detailed study of underlying mechanisms revealed that the regulation of the downregulation of CXCR4 was at the transcriptional level, as indicated by the downregulation of mRNA expression and suppression of nuclear factor-kappa B (NF-κB) activation. It further reduced the binding of NF-κB to the CXCR4 promoter. Besides, EB downregulated mesenchymal marker proteins (neural cadherin and vimentin) and concurrently upregulated epithelial markers (epithelial cadherin and occludin). Overall, these findings suggest that EB can abrogate breast cancer cell invasion and metastasis by suppression of CXCR4, MMP-9/2 expressions, and inhibition of epithelial-mesenchymal transition and thus may have a great potential to suppress metastasis of breast cancer. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Benzoquinonas/uso terapêutico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Receptores CXCR4/metabolismo , Benzoquinonas/administração & dosagem , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Feminino , Humanos , Células MCF-7 , Invasividade Neoplásica , Transdução de Sinais , Inibidor Tecidual de Metaloproteinase-1/metabolismo
17.
Immunopharmacol Immunotoxicol ; 38(5): 334-43, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27324722

RESUMO

Constitutive activation of signal transducer and activator of transcription 3 (STAT3) is frequently observed and closely linked with proliferation, survival, metastasis and angiogenesis of various cancer cells, and thus its inhibition can be considered a potential therapeutic strategy. We found that 3-formylchromone (3FC) inhibited both constitutive and inducible STAT3 activation in multiple myeloma (MM) cells. Besides the inhibition of STAT3 phosphorylation, 3FC also abrogated constitutive activity and nuclear translocation of STAT3. This suppression was mediated through the inhibition of phosphorylation of Janus-activated kinase (JAK) 1/2 and Src. Furthermore, 3FC induced the expression of the protein inhibitors of activated STAT3 (PIAS3), and gene silencing of the PIAS3 by small interfering RNA abolished the ability of 3FC to inhibit STAT3 activation, suggesting a critical role for PIAS3 in the action of 3FC. 3FC also downregulated the expression of STAT3-regulated gene products such as Bcl-2, Bcl-xl, Mcl-1, Survivin, inhibitor of apoptosis protein-1 (IAP-1), Cyclin D1, cyclooxygenase-2 (COX-2), and matrix metalloproteinases-9 (MMP-9) in MM cells. This correlated with induction of substantial apoptosis as indicated by an increase in the sub-G1 cell population and caspase-3 induced poly ADP ribose polymerase (PARP) cleavage. Overall, these results suggest that 3FC is a novel blocker of STAT3 activation pathway thus may have a potential in therapy of MM and other cancers.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromonas/farmacologia , Chaperonas Moleculares/imunologia , Mieloma Múltiplo/imunologia , Proteínas de Neoplasias/imunologia , Proteínas Inibidoras de STAT Ativados/imunologia , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/efeitos dos fármacos , Apoptose/imunologia , Linhagem Celular Tumoral , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Transdução de Sinais/imunologia
18.
J Immunol ; 190(4): 1623-30, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23303667

RESUMO

Bone mineralization is a normal physiological process, whereas ectopic calcification of soft tissues is a pathological process that leads to irreversible tissue damage. We have established a coxsackievirus B3 (CVB3)-infected mouse model that manifests both osteoporosis and ectopic calcification specifically in heart, pancreas, and lung. The CVB3-infected mice showed increased serum concentrations of both cytokines including IL-1ß, TNF-α, and the receptor activator of NF-κB ligand (RANKL) that stimulate osteoclast formation and of the osteoclast-derived protein tartrate-resistant acid phosphatase 5b. They exhibited more osteoclasts in bone, with no change in the number of osteoblasts, and a decrease in bone formation and the serum concentration of osteoblast-produced osteocalcin. These results indicate that CVB3-induced osteoporosis is likely due to upregulation of osteoclast formation and function, in addition to decreased osteoblast activity. In addition, the serum in the CVB3-infected mice contained a high inorganic phosphate content, which causes ectopic calcification. RANKL treatment induced an increase in the in vitro cardiac fibroblast calcification by inorganic phosphate via the upregulation of osteogenic BMP2, SPARC, Runx2, Fra-1, and NF-κB signaling. We finally observed that i.p. administration of RANK-Fc, a recombinant antagonist of RANKL, prevented bone loss as well as ectopic calcification in CVB3-infected mice. Thus, our results indicate that RANKL may contribute to both abnormal calcium deposition in soft tissues and calcium depletion in bone. In addition, our animal model should provide a tool for the development of new therapeutic agents for calcium disturbance in soft and hard tissues.


Assuntos
Calcinose/prevenção & controle , Infecções por Coxsackievirus/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Osteoporose/prevenção & controle , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Animais , Calcinose/patologia , Calcinose/virologia , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/patologia , Modelos Animais de Doenças , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/patologia , Ossificação Heterotópica/virologia , Osteoblastos/patologia , Osteoblastos/virologia , Osteoclastos/patologia , Osteoclastos/virologia , Osteoporose/virologia , Ligante RANK/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Receptor Ativador de Fator Nuclear kappa-B/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética
19.
Pediatr Cardiol ; 34(7): 1556-66, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23467728

RESUMO

Although the right ventricular (RV) myocardial performance index (MPI) usually is increased in the presence of RV dysfunction and pressure overload, debate continues over the correlation between the RV MPI and functional derangement in patients with RV pressure-overload congenital heart disease (CHD). To address this controversy, this study took serial measurements of the RV MPI in addition to invasive RV hemodynamic measurements during the acute stage of mild to severe pressure overload. Right ventricle pressure overload was induced by partial pulmonary arterial banding (PAB) in 3-week-old rats. The rats were divided into two groups: mild pulmonary stenosis (PS) group (20-40 % stenosis; n = 20) and severe PS group (40-70 % stenosis; n = 28). Sham-treated animals (sham group; n = 30) underwent the same surgical procedure without PAB. Pressure-overload RV hypertrophy was documented by weighing the heart, by evaluating echocardiograms, and by evaluating cardiac hypertrophy-associated gene expression. The RV MPI was checked 1, 2, 3, 5, and 8 weeks after PAB. The MPI was calculated as the sum of the isovolumic contraction time and the isovolumic relaxation time (IRT) divided by the ejection time. The RV MPI of the mild PS group did not differ significantly from that of the sham group. The RV MPI of the severe PS group, however, was lower than that of the sham group (0.27 ± 0.01 vs 0.29 ± 0.01) 2 to 8 weeks after PAB: 0.19 ± 0.01 at 2 weeks (P < 0.001), 0.16 ± 0.01 at 3 weeks (P < 0.001), 0.20 ± 0.01 at 5 weeks (P = 0.021), and 0.18 ± 0.01 at 8 weeks (P < 0.001) after PAB. The decreased RV MPI was associated with decreased IRT and increased ejection time. RV hypertrophy contributes to the decrease in the RV MPI in the severe pressure-overload condition.


Assuntos
Cardiomiopatia Hipertrófica/fisiopatologia , Ventrículos do Coração/fisiopatologia , Contração Miocárdica/fisiologia , Disfunção Ventricular Direita/etiologia , Função Ventricular Direita/fisiologia , Pressão Ventricular , Animais , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Modelos Animais de Doenças , Progressão da Doença , Ecocardiografia Doppler , Ventrículos do Coração/diagnóstico por imagem , Masculino , Ratos , Ratos Sprague-Dawley , Índice de Gravidade de Doença , Disfunção Ventricular Direita/diagnóstico por imagem , Disfunção Ventricular Direita/fisiopatologia
20.
Circulation ; 123(21): 2392-403, 2011 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-21576649

RESUMO

BACKGROUND: Cardiac hypertrophy is characterized by transcriptional reprogramming of fetal gene expression, and histone deacetylases (HDACs) are tightly linked to the regulation of those genes. We previously demonstrated that activation of HDAC2, 1 of the class I HDACs, mediates hypertrophy. Here, we show that casein kinase-2α1 (CK2α1)-dependent phosphorylation of HDAC2 S394 is required for the development of cardiac hypertrophy. METHODS AND RESULTS: Hypertrophic stimuli phosphorylated HDAC2 S394, which was necessary for its enzymatic activation, and therefore the development of hypertrophic phenotypes in rat neonatal cardiomyocytes or in isoproterenol-administered mice hearts. Transgenic mice overexpressing HDAC2 wild type exhibited cardiac hypertrophy, whereas those expressing phosphorylation-resistant HDAC2 S394A did not. Compared with that in age-matched normal human hearts, phosphorylation of HDAC2 S394 was dramatically increased in patients with hypertrophic cardiomyopathy. Hypertrophy-induced phosphorylation of HDAC2 S394 and its enzymatic activity were completely blocked either by CK2 blockers or by CK2α1 short interfering RNA. Hypertrophic stimuli led CK2α1 to be activated, and its chemical inhibitors blocked hypertrophy in both phenylephrine-treated cardiomyocytes and isoproterenol-administered mice. CK2α1-transgenic mice developed hypertrophy, which was attenuated by administration of trichostatin A, an HDAC inhibitor. Overexpression of CK2α1 caused hypertrophy in cardiomyocytes, whereas chemical inhibitors of both CK2 and HDAC as well as HDAC2 S394A blunted it. Hypertrophy in CK2α1-transgenic mice was exaggerated by crossing these mice with wild-type-HDAC2-overexpressing mice. By contrast, however, it was blocked when CK2α1-transgenic mice were crossed with HDAC2 S394A-transgenic mice. CONCLUSIONS: We have demonstrated a novel mechanism in the development of cardiac hypertrophy by which CK2 activates HDAC2 via phosphorylating HDAC2 S394.


Assuntos
Cardiomegalia/enzimologia , Caseína Quinase II/metabolismo , Ventrículos do Coração/enzimologia , Histona Desacetilase 2/metabolismo , Serina/metabolismo , Alanina/genética , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomiopatia Hipertrófica/enzimologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Caseína Quinase II/genética , Ativação Enzimática/genética , Ventrículos do Coração/patologia , Histona Desacetilase 2/biossíntese , Histona Desacetilase 2/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosforilação/genética , Serina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA