Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1853(5): 1174-81, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25728284

RESUMO

Downregulation of multiple cell cycle-regulatory molecules is a dominant event in TGF-ß1-mediated growth inhibition of human carcinoma cells. It is known that KLF10 mimics the anti-proliferative and apoptotic effects that TGF-ß1 has on epithelial cell growth and the growth of various tumor cells; based on these findings it is considered as a tumor suppressor. KLF10 protein expression is tightly associated with cell cycle-dependent events. However, the regulatory mechanism and its biological meaning have not been identified. In this study, we have demonstrated that KLF10 is a substrate of CDK2/cyclin E and can be phosphorylated. We also have shown that KLF10 efficiently binds to CDK2, while binding much less to CDK4, and displaying no binding to Cdk6. Using mass spectrometry, site direct mutagenesis, in vitro kinase assays and depletion assays, we have established that CDK2 phosphorylates Ser206, which subsequently affects the steady state level of KLF10 in cells. Our studies have also proved that CDK2 up-regulates the protein level of KLF10 through reducing its association with SIAH1, a KLF10 E3-ubiqutin ligase involved in proteasomal degradation. Taken all together, these findings indicate that CDK2-dependent phosphorylation regulates KLF10 stability and that this affects the role of KLF10 in cell.


Assuntos
Quinase 2 Dependente de Ciclina/metabolismo , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Fatores de Transcrição de Resposta de Crescimento Precoce/química , Humanos , Fatores de Transcrição Kruppel-Like/química , Dados de Sequência Molecular , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Estabilidade Proteica
2.
FEBS Open Bio ; 5: 283-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25905033

RESUMO

Human immunodeficiency virus type 1 nucleocapsid (NC) basic residues presumably contribute to virus assembly via RNA, which serves as a scaffold for Gag-Gag interaction during particle assembly. To determine whether NC basic residues play a role in Gag cleavage (thereby impacting virus assembly), Gag processing efficiency and virus particle production were analyzed for an HIV-1 mutant NC15A, with alanine serving as a substitute for all NC basic residues. Results indicate that NC15A significantly impaired virus maturation in addition to significantly affecting Gag membrane binding and assembly. Interestingly, removal of the matrix (MA) central globular domain ameliorated the NC15A assembly and processing defects, likely through enhancement of Gag multimerization and membrane binding capacities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA