RESUMO
BACKGROUND: The impact of prolonging temozolomide (TMZ) maintenance beyond six cycles in newly diagnosed glioblastoma (GBM) remains a topic of discussion. We investigated the effects of prolonged TMZ maintenance on progression-free survival (PFS) and overall survival (OS). PATIENTS AND METHODS: In this retrospective single-center cohort study, we included patients with GBM who were treated with radiation therapy with concomitant and adjuvant TMZ. For analysis, patients were considered who either completed six TMZ maintenance cycles (group B), continued with TMZ therapy beyond six cycles (group C), or stopped TMZ maintenance therapy within the first six cycles (group A). Patients with progression during the first six TMZ maintenance cycles were excluded. RESULTS: Clinical data from 107 patients were included for Kaplan-Meier analyses and 102 for Cox regressions. Median PFS times were 8.1 months (95% confidence interval [CI] 6.1-12.4) in group A, 13.7 months (95% CI 10.6-17.5) in group B, and 20.9 months (95% CI 15.2-43.5) in group C. At first progression, response rates of TMZ/lomustine rechallenge were 47% in group B and 13% in group C. Median OS times were 12.7 months (95% CI 10.3-16.8) in group A, 25.2 months (95% CI 17.7-55.5) in group B, and 28.6 months (95% CI 24.4-open) in group C. Nevertheless, multivariate Cox regression for patients in group C compared with group B that accounted for imbalances of other risk factors showed no different relative risk (RR) for OS (RR 0.77, p = .46). CONCLUSION: Our data do not support a general extension of TMZ maintenance therapy beyond six cycles. The Oncologist 2017;22:570-575 IMPLICATIONS FOR PRACTICE: Radiation therapy with concomitant and adjuvant temozolomide (TMZ) maintenance therapy is still the standard of care in patients below the age of 65 years in newly diagnosed glioblastoma. However, in clinical practice, many centers continue TMZ maintenance therapy beyond six cycles. The impact of this continuation is controversial and has not yet been addressed in prospective randomized clinical trials. We compared the effect of more than six cycles of TMZ in comparison with exactly six cycles on overall survival (OS) and progression-free survival (PFS) by multivariate analysis and found a benefit in PFS but not OS. Thus, our data do not suggest prolonging TMZ maintenance therapy beyond six cycles, which should be considered in neurooncological practice.
Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Quimioterapia Adjuvante/efeitos adversos , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Adulto , Idoso , Antineoplásicos Alquilantes/efeitos adversos , Terapia Combinada , Dacarbazina/administração & dosagem , Dacarbazina/efeitos adversos , Intervalo Livre de Doença , Feminino , Glioblastoma/patologia , Glioblastoma/radioterapia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Fatores de Risco , TemozolomidaRESUMO
Rationale: CAN-2409 is a locally delivered oncolytic therapy, which results in vaccination against the injected tumor. CAN-2409 consists of a non-replicating adenovirus armed with the Herpes virus thymidine kinase, which metabolizes ganciclovir into a phosphorylated nucleotide that is incorporated into the tumor cell's genome, thereby inflicting immunogenic cancer cell death. While CAN-2409's immunological impact has been well characterized, its effects on the tumor cells transcriptome remains unknown. We compared the transcriptomic landscape after treatment of glioblastoma models with CAN-2409 in vitro and in vivo to assess how the interplay with the tumor microenvironment influences CAN-2409-mediated transcriptome alterations. Methods: We performed RNA-Seq with CAN-2409 treated patient-derived glioma stem-like cells and tumors of C57/BL6 mice and compared KEGG pathway usage and differential gene expression focusing on immune cell and cytokine profiles. T-cell -killing assays were performed to assess candidate effectors. Results: PCA analysis showed distinct clustering of control and CAN-2409 samples under both conditions. KEGG pathway analysis revealed significant enrichment for p53 signaling and cell cycle pathway, with similar dynamics for key regulators of both pathways in vitro and in vivo, including MYC, CCNB1, PLK1 and CDC20. Selected alterations (PLK1 and CCNB1) were validated at the protein level. Cytokine expression analysis revealed upregulation of pro-inflammatory IL12a under both conditions; immune cell gene profiling showed reduction of myeloid associated genes. T-cell-killing assays showed increased killing in the presence of IL-12. Conclusion: CAN-2409 significantly alters the transcriptome both in vitro and in vivo. Comparison of pathway enrichment revealed mutual and differential utilization of pathways under both conditions, suggesting a modulating influence on the cell cycle in tumor cells, and of the tumor microenvironment on the transcriptome in vivo. IL-12 synthesis likely depends on interactions with the tumor microenvironment, and it facilitates CAN-2409 cell killing. This dataset provides potential to understand resistance mechanisms and identify potential biomarkers for future studies.
RESUMO
Derivatives of the Chinese traditional medicine indirubin have shown potential for the treatment of cancer through a range of mechanisms. This study investigates the impact of 6'-bromoindirubin-3'-acetoxime (BiA) on immunosuppressive mechanisms in glioblastoma (GBM) and evaluates the efficacy of a BiA nanoparticle formulation, PPRX-1701, in immunocompetent mouse GBM models. Transcriptomic studies reveal that BiA downregulates immune-related genes, including indoleamine 2,3-dioxygenase 1 (IDO1), a critical enzyme in the tryptophan-kynurenine-aryl hydrocarbon receptor (Trp-Kyn-AhR) immunosuppressive pathway in tumor cells. BiA blocks interferon-γ (IFNγ)-induced IDO1 protein expression in vitro and enhances T cell-mediated tumor cell killing in GBM stem-like cell co-culture models. PPRX-1701 reaches intracranial murine GBM and significantly improves survival in immunocompetent GBM models in vivo. Our results indicate that BiA improves survival in murine GBM models via effects on important immunotherapeutic targets in GBM and that it can be delivered efficiently via PPRX-1701, a nanoparticle injectable formulation of BiA.
Assuntos
Glioblastoma , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Triptofano/farmacologia , Cinurenina , Oximas/farmacologia , Oximas/uso terapêuticoRESUMO
BACKGROUND: Intratumoral viral oncolytic immunotherapy is a promising new approach for the treatment of a variety of solid cancers. CAN-2409 is a replication-deficient adenovirus that delivers herpes simplex virus thymidine kinase to cancer cells, resulting in local conversion of ganciclovir or valacyclovir into a toxic metabolite. This leads to highly immunogenic cell death, followed by a local immune response against a variety of cancer neoantigens and, next, a systemic immune response against the injected tumor and uninjected distant metastases. CAN-2409 treatment has shown promising results in clinical studies in glioblastoma (GBM). Patients with GBM are usually given the corticosteroid dexamethasone to manage edema. Previous work has suggested that concurrent dexamethasone therapy may have a negative effect in patients treated with immune checkpoint inhibitors in patients with GBM. However, the effects of dexamethasone on the efficacy of CAN-2409 treatment have not been explored. METHODS: In vitro experiments included cell viability and neurosphere T-cell killing assays. Effects of dexamethasone on CAN-2409 in vivo were examined using a syngeneic murine GBM model; survival was assessed according to Kaplan-Meier; analyses of tumor-infiltrating lymphocytes were performed with mass cytometry (CyTOF - cytometry by time-of-flight). Data were analyzed using a general linear model, with one-way analysis of variance followed by Dunnett's multiple comparison test, Kruskal-Wallis test, Dunn's multiple comparison test or statistical significance analysis of microarrays. RESULTS: In a mouse model of GBM, we found that high doses of dexamethasone combined with CAN-2409 led to significantly reduced median survival (29.0 days) compared with CAN-2409 treatment alone (39.5 days). CyTOF analyses of tumor-infiltrating immune cells demonstrated potent immune stimulation induced by CAN-2409 treatment. These effects were diminished when high-dose dexamethasone was used. Functional immune cell characterization suggested increased immune cell exhaustion and tumor promoting profiles after dexamethasone treatment. CONCLUSION: Our data suggest that concurrent high-dose dexamethasone treatment may impair the efficacy of oncolytic viral immunotherapy of GBM, supporting the notion that dexamethasone use should be balanced between symptom control and impact on the therapeutic outcome.
Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Dexametasona/uso terapêutico , Glioblastoma/tratamento farmacológico , Glucocorticoides/uso terapêutico , Imunoterapia/métodos , Terapia Viral Oncolítica/métodos , Animais , Neoplasias Encefálicas/patologia , Dexametasona/farmacologia , Feminino , Glioblastoma/patologia , Glucocorticoides/farmacologia , Humanos , Camundongos , Microambiente TumoralRESUMO
We disclose novel amphiphilic ruthenium and osmium complexes that auto-assemble into nanomedicines with potent antiproliferative activity by inhibition of mitochondrial respiration. The self-assembling units were rationally designed from the [M(p-cymene)(1,10-phenanthroline)Cl]PF6 motif (where M is either RuII or OsII) with an appended C16 fatty chain to achieve high cellular activity, nano-assembling and mitochondrial targeting. These amphiphilic complexes block cell proliferation at the sub-micromolar range and are particularly potent towards glioblastoma neurospheres made from patient-derived cancer stem cells. A subcutaneous mouse model using these glioblastoma stem cells highlights one of our C16 OsII nanomedicines as highly successful in vivo. Mechanistically, we show that they act as metabolic poisons, strongly impairing mitochondrial respiration, corroborated by morphological changes and damage to the mitochondria. A genetic strategy based on RNAi gave further insight on the potential involvement of microtubules as part of the induced cell death. In parallel, we examined the structural properties of these new amphiphilic metal-based constructs, their reactivity and mechanism.
RESUMO
CAN-2409 is a replication-deficient adenovirus encoding herpes simplex virus (HSV) thymidine kinase (tk) currently in clinical trials for treatment of glioblastoma. The expression of tk in transduced cancer cells results in conversion of the pro-drug ganciclovir into a toxic metabolite causing DNA damage, inducing immunogenic cell death and immune activation. We hypothesize that CAN-2409 combined with DNA-damage-response inhibitors could amplify tumor cell death, resulting in an improved response. We investigated the effects of ATR inhibitor AZD6738 in combination with CAN-2409 in vitro using cytotoxicity, cytokine, and fluorescence-activated cell sorting (FACS) assays in glioma cell lines and in vivo with an orthotopic syngeneic murine glioma model. Tumor immune infiltrates were analyzed by cytometry by time of flight (CyTOF). In vitro, we observed a significant increase in the DNA-damage marker γH2AX and decreased expression of PD-L1, pro-tumorigenic cytokines (interleukin-1ß [IL-1ß], IL-4), and ligand NKG2D after combination treatment compared with monotherapy or control. In vivo, long-term survival was increased after combination treatment (66.7%) compared with CAN-2409 (50%) and control. In a tumor re-challenge, long-term immunity after combination treatment was not improved. Our results suggest that ATR inhibition could amplify CAN-2409's efficacy in glioblastoma through increased DNA damage while having complex immunological ramifications, warranting further studies to determine the ideal conditions for maximized therapeutic benefit.
RESUMO
Glioblastoma is an aggressive primary tumor of the central nervous system. Targeting the immunosuppressive glioblastoma-associated microenvironment is an interesting therapeutic approach. Tumor-associated macrophages represent an abundant population of tumor-infiltrating host cells with tumor-promoting features. The colony stimulating factor-1/ colony stimulating factor-1 receptor (CSF-1/CSF1R) axis plays an important role for macrophage differentiation and survival. We thus aimed at investigating the antiglioma activity of CSF1R inhibition alone or in combination with blockade of programmed death (PD) 1. We investigated combination treatments of anti-CSF1R alone or in combination with anti-PD1 antibodies in an orthotopic syngeneic glioma mouse model, evaluated post-treatment effects and assessed treatment-induced cytotoxicity in a coculture model of patient-derived microtumors (PDM) and autologous tumor-infiltrating lymphocytes (TILs) ex vivo. Anti-CSF1R monotherapy increased the latency until the onset of neurological symptoms. Combinations of anti-CSF1R and anti-PD1 antibodies led to longterm survivors in vivo. Furthermore, we observed treatment-induced cytotoxicity of combined anti-CSF1R and anti-PD1 treatment in the PDM/TILs cocultures ex vivo. Our results identify CSF1R as a promising therapeutic target for glioblastoma, potentially in combination with PD1 inhibition.
RESUMO
Herpes simplex virus 1 (HSV-1) provides a genetic chassis for several oncolytic viruses (OVs) currently in clinical trials. Oncolytic HSV1 (oHSV) have been engineered to reduce neurovirulence and enhance anti-tumor lytic activity and immunogenicity to make them attractive candidates in a range of oncology indications. Successful clinical data resulted in the FDA-approval of the oHSV talimogene laherparepvec (T-Vec) in 2015, and several other variants are currently undergoing clinical assessment and may expand the landscape of future oncologic therapy options. This review offers a detailed overview of the latest results from clinical trials as well as an outlook on newly developed HSV-1 oncolytic variants with improved tumor selectivity, replication, and immunostimulatory capacity and related clinical studies.
RESUMO
BACKGROUND: The overexpression of (basic)helix-loop-helix ((b)HLH) transcription factors (TFs) is frequent in malignant glioma. We investigated molecular effects upon disruption of the (b)HLH network by a dominant-negative variant of the E47 protein (dnE47). Our goal was to identify novel molecular subgroup-specific therapeutic strategies. METHODS: Glioma cell lines LN229, LNZ308, and GS-2/GS-9 were lentivirally transduced. Functional characterization included immunocytochemistry, immunoblots, cytotoxic, and clonogenic survival assays in vitro, and latency until neurological symptoms in vivo. Results of cap analysis gene expression and RNA-sequencing were further validated by immunoblot, flow cytometry, and functional assays in vitro. RESULTS: The induction of dnE47-RFP led to cytoplasmic sequestration of (b)HLH TFs and antiglioma activity in vitro and in vivo. Downstream molecular events, ie, alterations in transcription start site usage and in the transcriptome revealed enrichment of cancer-relevant pathways, particularly of the DNA damage response (DDR) pathway. Pharmacologic validation of this result using ataxia telangiectasia and Rad3 related (ATR) inhibition led to a significantly enhanced early and late apoptotic effect compared with temozolomide alone. CONCLUSIONS: Gliomas overexpressing (b)HLH TFs are sensitive toward inhibition of the ATR kinase. The combination of ATR inhibition plus temozolomide or radiation therapy in this molecular subgroup are warranted.
RESUMO
Glioblastoma is an aggressive primary brain tumor with bad prognosis. On the other hand, oncolytic measles virus (MeV) therapy is an experimental glioma treatment strategy with clinical safety and first evidence of anti-tumoral efficacy. Therefore, we investigated the combination of MeV with conventional therapies by cytotoxic survival assays in long-term glioma cell lines LN229, LNZ308, and glioma stem-like GS8 cells, as well as the basal viral infectivity in primary glioblastoma cultures T81/16, T1094/17, and T708/16. We employed Chou-Talalay analysis to identify the synergistic treatment sequence chemotherapy, virotherapy, and finally radiotherapy (CT-VT-RT). RNA sequencing and immunopeptidome analyses were used to delineate treatment-induced molecular and immunological profiles. CT-VT-RT displayed synergistic anti-glioma activity and initiated a type 1 interferon response, along with canonical Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling, and downstream interferon-stimulated genes were induced, resulting in apoptotic cascades. Furthermore, antigen presentation along with immunostimulatory chemokines was increased in CT-VT-RT-treated glioma cells, indicating a treatment-induced pro-inflammatory phenotype. We identified novel treatment-induced viral and tumor-associated peptides through HLA ligandome analysis. Our data delineate an actionable treatment-induced molecular and immunological signature of CT-VT-RT, and they could be exploited for the design of novel tailored treatment strategies involving virotherapy and immunotherapy.
RESUMO
As reliable biomarkers of disease activity are lacking, monitoring of therapeutic response in chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) remains a challenge. We sought to determine whether nerve ultrasound and electrophysiology scoring could close this gap. In CIDP patients (fulfilling EFNS/PNS criteria), we performed high-resolution nerve ultrasound to determine ultrasound pattern sum scores (UPSS) and predominant echotexture nerve conduction study scores (NCSS) as well as Medical Research Council sum scores (MRCSS) and inflammatory neuropathy cause and treatment disability scores (INCAT) at baseline and after 12 months of standard treatment. We retrospectively correlated ultrasound morphology with nerve histology when available. 72/80 CIDP patients featured multifocal nerve enlargement, and 35/80 were therapy-naïve. At baseline, clinical scores correlated with NCSS (r2 = 0.397 and r2 = 0.443, p < 0.01), but not or hardly with UPSS (Medical Research Council sum scores MRCSS r2 = 0.013, p = 0.332; inflammatory neuropathy cause and treatment disability scores INCAT r2 = 0.053, p = 0.048). Longitudinal changes in clinical scores, however, correlated significantly with changes in both UPSS and NCSS (r2 = 0.272-0.414, p < 0.0001). Combining nerve/fascicle size with echointensity and histology at baseline, we noted 3 distinct classes: 1) hypoechoic enlargement, reflecting active inflammation and onion bulbs; 2) nerve enlargement with additional hyperechogenic fascicles/perifascicular tissue in > 50% of measured segments, possibly reflecting axonal degeneration; and 3) almost no enlargement, reflecting "burned-out" or "cured" disease without active inflammation. Clinical improvement after 12 months was best in patients with pattern 1 (up to 75% vs up to 43% in pattern 2/3, Fisher's exact test p < 0.05). Nerve ultrasound has additional value not only for diagnosis, but also for classification of disease state and may predict treatment response.
Assuntos
Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/diagnóstico , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/terapia , Nervos Espinhais/diagnóstico por imagem , Ultrassonografia , Idoso , Biomarcadores , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Condução Nervosa , Estudos Prospectivos , Nervos Espinhais/patologia , Nervos Espinhais/fisiopatologia , Resultado do TratamentoRESUMO
OBJECTIVE: Polyneuropathies are increasingly analyzed by ultrasound. Summarizing, diffuse enlargement is typical in Charcot-Marie Tooth type 1 (CMT1a), regional enlargement occurs in inflammatory neuropathies. However, a distinction of subtypes is still challenging. Therefore, this study focused on fascicle size and pattern in controls and distinct neuropathies. METHODS: Cross-sectional area (CSA) of the median, ulnar and peroneal nerve (MN, UN, PN) was measured at predefined landmarks in 50 healthy controls, 15 CMT1a and 13 MMN patients. Additionally, largest fascicle size and number of visible fascicles was obtained at the mid-upper arm cross-section of the MN and UN and in the popliteal fossa cross-section of the PN. RESULTS: Cut-off normal values for fascicle size in the MN, UN and PN were defined (<4.8mm2, <2.8mm2 and <3.5mm2). In CMT1a CSA and fascicle values are significantly enlarged in all nerves, while in MMN CSA and fascicles are regionally enlarged with predominance in the upper arm nerves. The ratio of enlarged fascicles and all fascicles was significantly increased in CMT1a (>50%) in all nerves (p<0.0001), representing diffuse fascicle enlargement, and moderately increased in MMN (>20%), representing differential fascicle enlargement (enlarged and normal fascicles at the same location) sparing the peroneal nerve (regional fascicle enlargement). Based on these findings distinct fascicle patterns were defined. CONCLUSION: Normal values for fascicle size could be evaluated; while CMT1a features diffuse fascicle enlargement, MMN shows regional and differential predominance with enlarged fascicles as single pathology. SIGNIFICANCE: Pattern analysis of fascicles might facilitate distinction of several otherwise similar neuropathies.