Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci Health B ; 55(12): 1069-1079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32880524

RESUMO

Bentazone degradation efficiency and mineralization in water solutions using chlorine dioxide treatment were evaluated. Double distilled water and a river water sample spiked with bentazone were studied and compared after chlorine dioxide treatment. Degradation efficiency was determined using high-performance liquid chromatography (HPLC). Daphnia magna toxicity testing and total organic carbon (TOC) analysis were used to ascertain the toxicity of the degraded solutions and mineralization degree. Bentazone degradation products were identified using gas chromatography with a triple quadrupole mass detector (GC-MS-MS). A simple mechanistic scheme for oxidative degradation of bentazone was proposed based on the degradation products that were identified. Decrease in D. magna mortality, high degradation efficiency and partial bentazone mineralization were achieved by waters containing bentazone degradation products, which indicate the formation of less toxic compounds than the parent bentazone and effective removal of bentazone from the waters. Bentazone degraded into four main degradation products. Humic acid from Sava River water influenced bentazone degradation, resulting in a lower degradation efficiency in this matrix (about 10% lower than in distilled water). Chlorine dioxide treatment of water to degrade bentazone is efficient and offers a novel approach in the development of new technology for removal of this herbicide from contaminated water.


Assuntos
Benzotiadiazinas/química , Herbicidas/química , Poluentes Químicos da Água/química , Animais , Benzotiadiazinas/toxicidade , Carbono/análise , Compostos Clorados/química , Cromatografia Líquida de Alta Pressão , Daphnia/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Herbicidas/toxicidade , Substâncias Húmicas , Oxirredução , Óxidos/química , Rios , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
2.
Environ Monit Assess ; 192(7): 422, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32519186

RESUMO

Chlorine dioxide has been reported as very efficiently removing pesticides and other organic compounds from water matrixes. Due to pesticide toxicity and potential toxicity of their degradation products, it is important to monitor these compounds as environmental pollutants in ground and surface waters. Evaluating the effects of chlorine dioxide treatment is necessary, and toxicity studies are used to ascertain the severity of effects of intermediates due to incomplete degradation of the parent compounds. In this paper, for the first time, chlorine dioxide is applied and evaluated for the removal of chloroacetamide herbicides (pethoxamid and metazachlor) from waters (deionized water and Sava River water). The degradation degree of herbicides was measured by high-performance liquid chromatography, the main degradation products were identified using gas chromatography with a triple quadrupole mass detector, and the degree of mineralization was monitored by total organic carbon analysis. Four and two degradation products were identified after pethoxamid and metazachlor degradation, respectively. Total organic carbon analysis showed mineralization occurred, but it was incomplete. The mineralization and the characteristics of the degradation products obtained were tested using Daphnia magna and showed lower toxicity than the parent herbicides. The advantage of the applied treatment was a very high degradation percentage for pethoxamid removal from deionized water and Sava River water (100% and 97%, respectively), with higher mineralization efficiency (65%) than metazachlor. Slightly lower degradation efficiency in the Sava River water was due to chlorine dioxide oxidizing the herbicides and dissolved organic matter simultaneously.


Assuntos
Acetamidas , Compostos Clorados , Óxidos , Poluentes Químicos da Água , Purificação da Água , Acetamidas/análise , Acetamidas/química , Acetamidas/metabolismo , Acetamidas/toxicidade , Animais , Compostos Clorados/química , Daphnia/efeitos dos fármacos , Ecotoxicologia , Óxidos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
3.
Environ Sci Pollut Res Int ; 27(21): 27147-27160, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32399889

RESUMO

Chlorine dioxide (ClO2) degradation of the organophosphorus pesticides azamethiphos (AZA) and dimethoate (DM) (10 mg/L) in deionized water and in Sava River water was investigated for the first time. Pesticide degradation was studied in terms of ClO2 level (5 and 10 mg/L), degradation duration (0.5, 1, 2, 3, 6, and 24 h), pH (3.00, 7.00, and 9.00), and under light/dark conditions in deionized water. Degradation was monitored using high-performance liquid chromatography. Gas chromatography coupled with triple quadrupole mass detector was used to identify degradation products of pesticides. Total organic carbon was measured to determine the extent of mineralization after pesticide degradation. Real river water was used under recommended conditions to study the influence of organic matter on pesticide degradation. High degradation efficiency (88-100% for AZA and 85-98% for DM) was achieved in deionized water under various conditions, proving the flexibility of ClO2 degradation for the examined organophosphorus pesticides. In Sava River water, however, extended treatment duration achieved lower degradation efficiency, so ClO2 oxidized both the pesticides and dissolved organic matter in parallel. After degradation, AZA produced four identified products (6-chlorooxazolo[4,5-b]pyridin-2(3H)-one; O,O,S-trimethyl phosphorothioate; 6-chloro-3-(hydroxymethyl)oxazolo[4,5-b]pyridin-2(3H)-one; O,O-dimethyl S-hydrogen phosphorothioate) and DM produced three (O,O-dimethyl S-(2-(methylamino)-2-oxoethyl) phosphorothioate; e.g., omethoate; S-(2-(methylamino)-2-oxoethyl) O,O-dihydrogen phosphorothioate; O,O,S-trimethyl phosphorodithioate). Simple pesticide degradation mechanisms were deduced. Daphnia magna toxicity tests showed degradation products were less toxic than parent compounds. These results contribute to our understanding of the multiple influences that organophosphorus pesticides and their degradation products have on environmental ecosystems and to improving pesticide removal processes from water.


Assuntos
Praguicidas , Poluentes Químicos da Água , Purificação da Água , Animais , Compostos Clorados , Dimetoato , Ecossistema , Organotiofosfatos , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA