Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Med Image Anal ; 99: 103353, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39340971

RESUMO

Segmentation of the fetal and maternal structures, particularly intrapartum ultrasound imaging as advocated by the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) for monitoring labor progression, is a crucial first step for quantitative diagnosis and clinical decision-making. This requires specialized analysis by obstetrics professionals, in a task that i) is highly time- and cost-consuming and ii) often yields inconsistent results. The utility of automatic segmentation algorithms for biometry has been proven, though existing results remain suboptimal. To push forward advancements in this area, the Grand Challenge on Pubic Symphysis-Fetal Head Segmentation (PSFHS) was held alongside the 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023). This challenge aimed to enhance the development of automatic segmentation algorithms at an international scale, providing the largest dataset to date with 5,101 intrapartum ultrasound images collected from two ultrasound machines across three hospitals from two institutions. The scientific community's enthusiastic participation led to the selection of the top 8 out of 179 entries from 193 registrants in the initial phase to proceed to the competition's second stage. These algorithms have elevated the state-of-the-art in automatic PSFHS from intrapartum ultrasound images. A thorough analysis of the results pinpointed ongoing challenges in the field and outlined recommendations for future work. The top solutions and the complete dataset remain publicly available, fostering further advancements in automatic segmentation and biometry for intrapartum ultrasound imaging.

2.
JMIR Med Inform ; 9(2): e22795, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33533728

RESUMO

BACKGROUND: Natural Language Understanding enables automatic extraction of relevant information from clinical text data, which are acquired every day in hospitals. In 2018, the language model Bidirectional Encoder Representations from Transformers (BERT) was introduced, generating new state-of-the-art results on several downstream tasks. The National NLP Clinical Challenges (n2c2) is an initiative that strives to tackle such downstream tasks on domain-specific clinical data. In this paper, we present the results of our participation in the 2019 n2c2 and related work completed thereafter. OBJECTIVE: The objective of this study was to optimally leverage BERT for the task of assessing the semantic textual similarity of clinical text data. METHODS: We used BERT as an initial baseline and analyzed the results, which we used as a starting point to develop 3 different approaches where we (1) added additional, handcrafted sentence similarity features to the classifier token of BERT and combined the results with more features in multiple regression estimators, (2) incorporated a built-in ensembling method, M-Heads, into BERT by duplicating the regression head and applying an adapted training strategy to facilitate the focus of the heads on different input patterns of the medical sentences, and (3) developed a graph-based similarity approach for medications, which allows extrapolating similarities across known entities from the training set. The approaches were evaluated with the Pearson correlation coefficient between the predicted scores and ground truth of the official training and test dataset. RESULTS: We improved the performance of BERT on the test dataset from a Pearson correlation coefficient of 0.859 to 0.883 using a combination of the M-Heads method and the graph-based similarity approach. We also show differences between the test and training dataset and how the two datasets influenced the results. CONCLUSIONS: We found that using a graph-based similarity approach has the potential to extrapolate domain specific knowledge to unseen sentences. We observed that it is easily possible to obtain deceptive results from the test dataset, especially when the distribution of the data samples is different between training and test datasets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA