Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
FASEB J ; 34(10): 13959-13977, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32851720

RESUMO

Growing evidence supports a central role of NADPH oxidases (NOXs) in the regulation of platelets, which are circulating cells involved in both hemostasis and thrombosis. Here, the use of Nox1-/- and Nox1+/+ mice as experimental models of human responses demonstrated a critical role of NOX1 in collagen-dependent platelet activation and pathological arterial thrombosis, as tested in vivo by carotid occlusion assays. In contrast, NOX1 does not affect platelet responses to thrombin and normal hemostasis, as assayed in tail bleeding experiments. Therefore, as NOX1 inhibitors are likely to have antiplatelet effects without associated bleeding risks, the NOX1-selective inhibitor 2-acetylphenothiazine (2APT) and a series of its derivatives generated to increase inhibitory potency and drug bioavailability were tested. Among the 2APT derivatives, 1-(10H-phenothiazin-2-yl)vinyl tert-butyl carbonate (2APT-D6) was selected for its high potency. Both 2APT and 2APT-D6 inhibited collagen-dependent platelet aggregation, adhesion, thrombus formation, superoxide anion generation, and surface activation marker expression, while responses to thrombin or adhesion to fibrinogen were not affected. In vivo administration of 2APT or 2APT-D6 led to the inhibition of mouse platelet aggregation, oxygen radical output, and thrombus formation, and carotid occlusion, while tail hemostasis was unaffected. Differently to in vitro experiments, 2APT-D6 and 2APT displayed similar potency in vivo. In summary, NOX1 inhibition with 2APT or its derivative 2APT-D6 is a viable strategy to control collagen-induced platelet activation and reduce thrombosis without deleterious effects on hemostasis. These compounds should, therefore, be considered for the development of novel antiplatelet drugs to fight cardiovascular diseases in humans.


Assuntos
Trombose das Artérias Carótidas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , NADPH Oxidase 1/antagonistas & inibidores , Fenotiazinas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Animais , Trombose das Artérias Carótidas/prevenção & controle , Células Cultivadas , Colágeno/metabolismo , Inibidores Enzimáticos/efeitos adversos , Inibidores Enzimáticos/uso terapêutico , Feminino , Fibrinogênio/metabolismo , Hemorragia/etiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fenotiazinas/efeitos adversos , Fenotiazinas/uso terapêutico , Adesividade Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/efeitos adversos , Inibidores da Agregação Plaquetária/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Trombina/metabolismo
2.
Am J Physiol Renal Physiol ; 315(5): F1358-F1369, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30110566

RESUMO

Tissue hypoxia has been proposed as an important event in renal ischemia-reperfusion injury (IRI), particularly during the period of ischemia and in the immediate hours following reperfusion. However, little is known about renal oxygenation during the subacute phase of IRI. We employed four different methods to assess the temporal and spatial changes in tissue oxygenation during the subacute phase (24 h and 5 days after reperfusion) of a severe form of renal IRI in rats. We hypothesized that the kidney is hypoxic 24 h and 5 days after an hour of bilateral renal ischemia, driven by a disturbed balance between renal oxygen delivery (Do2) and oxygen consumption (V̇o2). Renal Do2 was not significantly reduced in the subacute phase of IRI. In contrast, renal V̇o2 was 55% less 24 h after reperfusion and 49% less 5 days after reperfusion than after sham ischemia. Inner medullary tissue Po2, measured by radiotelemetry, was 25 ± 12% (mean ± SE) greater 24 h after ischemia than after sham ischemia. By 5 days after reperfusion, tissue Po2 was similar to that in rats subjected to sham ischemia. Tissue Po2 measured by Clark electrode was consistently greater 24 h, but not 5 days, after ischemia than after sham ischemia. Cellular hypoxia, assessed by pimonidazole adduct immunohistochemistry, was largely absent at both time points, and tissue levels of hypoxia-inducible factors were downregulated following renal ischemia. Thus, in this model of severe IRI, tissue hypoxia does not appear to be an obligatory event during the subacute phase, likely because of the markedly reduced oxygen consumption.


Assuntos
Injúria Renal Aguda/metabolismo , Rim/irrigação sanguínea , Rim/metabolismo , Consumo de Oxigênio , Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular , Modelos Animais de Doenças , Hemodinâmica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/patologia , Masculino , Oxigênio/sangue , Ratos Sprague-Dawley , Circulação Renal , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Índice de Gravidade de Doença , Transdução de Sinais , Fatores de Tempo
3.
J Physiol ; 594(21): 6287-6300, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27426098

RESUMO

KEY POINTS: Our understanding of the mechanisms underlying the role of hypoxia in the initiation and progression of renal disease remains rudimentary. We have developed a method that allows wireless measurement of renal tissue oxygen tension in unrestrained rats. This method provides stable and continuous measurements of cortical tissue oxygen tension (PO2) for more than 2 weeks and can reproducibly detect acute changes in cortical oxygenation. Exogenous angiotensin-II reduced renal cortical tissue PO2 more than equi-pressor doses of phenylephrine, probably because it reduced renal oxygen delivery more than did phenylephrine. Activation of the endogenous renin-angiotensin system in transgenic Cyp1a1Ren2 rats reduced cortical tissue PO2; in this model renal hypoxia precedes the development of structural pathology and can be reversed acutely by an angiotensin-II receptor type 1 antagonist. Angiotensin-II promotes renal hypoxia, which may in turn contribute to its pathological effects during development of chronic kidney disease. ABSTRACT: We hypothesised that both exogenous and endogenous angiotensin-II (AngII) can decrease the partial pressure of oxygen (PO2) in the renal cortex of unrestrained rats, which might in turn contribute to the progression of chronic kidney disease. Rats were instrumented with telemeters equipped with a carbon paste electrode for continuous measurement of renal cortical tissue PO2. The method reproducibly detected acute changes in cortical oxygenation induced by systemic hyperoxia and hypoxia. In conscious rats, renal cortical PO2 was dose-dependently reduced by intravenous AngII. Reductions in PO2 were significantly greater than those induced by equi-pressor doses of phenylephrine. In anaesthetised rats, renal oxygen consumption was not affected, and filtration fraction was increased only in the AngII infused animals. Oxygen delivery decreased by 50% after infusion of AngII and renal blood flow (RBF) fell by 3.3 ml min-1 . Equi-pressor infusion of phenylephrine did not significantly reduce RBF or renal oxygen delivery. Activation of the endogenous renin-angiotensin system in Cyp1a1Ren2 transgenic rats reduced cortical tissue PO2. This could be reversed within minutes by pharmacological angiotensin-II receptor type 1 (AT1 R) blockade. Thus AngII is an important modulator of renal cortical oxygenation via AT1 receptors. AngII had a greater influence on cortical oxygenation than did phenylephrine. This phenomenon appears to be attributable to the profound impact of AngII on renal oxygen delivery. We conclude that the ability of AngII to promote renal cortical hypoxia may contribute to its influence on initiation and progression of chronic kidney disease.


Assuntos
Angiotensina II/sangue , Rim/metabolismo , Consumo de Oxigênio , Circulação Renal , Antagonistas de Receptores de Angiotensina/farmacologia , Animais , Estado de Consciência , Citocromo P-450 CYP1A1/genética , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/fisiologia , Masculino , Fenilefrina/farmacologia , Ratos , Ratos Wistar , Renina/genética , Sistema Renina-Angiotensina , Vasoconstritores/farmacologia
4.
Am J Physiol Renal Physiol ; 304(12): F1471-80, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23576638

RESUMO

The precise roles of hypoxia in the initiation and progression of kidney disease remain unresolved. A major technical limitation has been the absence of methods allowing long-term measurement of kidney tissue oxygen tension (Po2) in unrestrained animals. We developed a telemetric method for the measurement of kidney tissue Po2 in unrestrained rats, using carbon paste electrodes (CPEs). After acute implantation in anesthetized rats, tissue Po2 measured by CPE-telemetry in the inner cortex and medulla was in close agreement with that provided by the "gold standard" Clark electrode. The CPE-telemetry system could detect small changes in renal tissue Po2 evoked by mild hypoxemia. In unanesthetized rats, CPE-telemetry provided stable measurements of medullary tissue Po2 over days 5-19 after implantation. It also provided reproducible responses to systemic hypoxia and hyperoxia over this time period. There was little evidence of fibrosis or scarring after 3 wk of electrode implantation. However, because medullary Po2 measured by CPE-telemetry was greater than that documented from previous studies in anesthetized animals, this method is presently best suited for monitoring relative changes rather than absolute values. Nevertheless, this new technology provides, for the first time, the opportunity to examine the temporal relationships between tissue hypoxia and the progression of renal disease.


Assuntos
Eletrodos Implantados , Rim/química , Oxigênio/análise , Telemetria/métodos , Animais , Gasometria , Carbono , Estado de Consciência , Masculino , Pressão Parcial , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Telemetria/instrumentação
5.
Am J Kidney Dis ; 59(5): 619-27, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22342213

RESUMO

BACKGROUND: Connective tissue growth factor (CTGF) has a key role in the pathogenesis of renal and cardiac fibrosis. Its amino-terminal fragment (N-CTGF), the predominant form of CTGF detected in plasma, has a molecular weight in the middle molecular range (18 kDa). However, it is unknown whether N-CTGF is a uremic retention solute that accumulates in chronic kidney disease (CKD) due to decreased renal clearance and whether it can be removed by hemodiafiltration. STUDY DESIGN: 4 observational studies in patients and 2 pharmacokinetic studies in rodents. SETTING & PARTICIPANTS: 4 single-center studies. First study (cross-sectional): 88 patients with CKD not receiving kidney replacement therapy. Second study (cross-sectional): 23 patients with end-stage kidney disease undergoing low-flux hemodialysis. Third study: 9 kidney transplant recipients before and 6 months after transplant. Fourth study: 11 low-flux hemodialysis patients and 12 hemodiafiltration patients before and after one dialysis session. PREDICTOR: First, second, and third study: (residual) glomerular filtration rate (GFR). Fourth study: dialysis modality. OUTCOMES & MEASUREMENTS: Plasma (N-)CTGF concentrations, measured by enzyme-linked immunosorbent assay. RESULTS: In patients with CKD, we observed an independent association between plasma CTGF level and estimated GFR (ß = -0.72; P < 0.001). In patients with end-stage kidney disease, plasma CTGF level correlated independently with residual kidney function (ß = -0.55; P = 0.046). Successful kidney transplant resulted in a decrease in plasma CTGF level (P = 0.008) proportional to the increase in estimated GFR. Plasma CTGF was not removed by low-flux hemodialysis, whereas it was decreased by 68% by a single hemodiafiltration session (P < 0.001). Pharmacokinetic studies in nonuremic rodents confirmed that renal clearance is the major elimination route of N-CTGF. LIMITATIONS: Observational studies with limited number of patients. Fourth study: nonrandomized, evaluation of the effect of one session; randomized longitudinal study is warranted. CONCLUSION: Plasma (N-)CTGF is eliminated predominantly by the kidney, accumulates in CKD, and is decreased substantially by a single hemodiafiltration session.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/sangue , Taxa de Filtração Glomerular/fisiologia , Nefropatias/sangue , Falência Renal Crônica/sangue , Rim/fisiopatologia , Adulto , Idoso , Animais , Doença Crônica , Fator de Crescimento do Tecido Conjuntivo/farmacocinética , Estudos Transversais , Feminino , Hemodiafiltração , Humanos , Nefropatias/fisiopatologia , Nefropatias/terapia , Falência Renal Crônica/fisiopatologia , Falência Renal Crônica/terapia , Transplante de Rim , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Modelos Animais , Ratos , Ratos Endogâmicos WKY , Diálise Renal
6.
Am J Physiol Endocrinol Metab ; 300(4): E691-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21266668

RESUMO

We hypothesized that perinatal inhibition of soluble epoxide hydrolase (SEH), which metabolizes epoxyeicosatrienoic acids in the arachidonic acid (AA) cascade, with an orally active SEH inhibitor, 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA), would persistently reduce blood pressure (BP) in adult SHR despite discontinuation of AUDA at 4 wk of age. Renal cytoplasmic epoxide hydrolase-2 (Ephx2) gene expression was enhanced in SHR vs. WKY from 2 days to 24 wk. Effects of perinatal treatment with AUDA, supplied to SHR dams until 4 wk after birth, on BP in female and male offspring and renal oxylipin metabolome in female offspring were observed and contrasted to female SHR for direct effects of AUDA (8-12 wk). Briefly, inhibition of SEH was effective in persistently reducing BP in female SHR when applied during the perinatal phase. This was accompanied by marked increases in major renal AA epoxides and decreases in renal lipoxygenase products of AA. Early inhibition of SEH induced a delayed increase in renal 5-HETE at 24 wk, in contrast to a decrease at 2 wk. Inhibition of SEH in female SHR from 8 to 12 wk did not reduce BP but caused profound decreases in renal 15(S)-HETrE, LTB4, TBX2, 5-HETE, and 20-HETE and increases in TriHOMEs. In male SHR, BP reduction after perinatal AUDA was transient. Thus, Ephx2 transcription and SEH activity in early life may initiate mechanisms that eventually contribute to high BP in adult female SHR. However, programmed BP-lowering effects of perinatal SEH inhibition in female SHR cannot be simply explained by persistent reduction in renal SEH activity but rather by more complex and temporally dynamic interactions between the renal SEH, lipoxygenase, and cyclooxygenase pathways.


Assuntos
Adamantano/análogos & derivados , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/fisiologia , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Ácidos Láuricos , Fatores Etários , Animais , Inibidores Enzimáticos , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Feminino , Idade Gestacional , Hipertensão/patologia , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Solubilidade
7.
Acta Pharm Sin B ; 11(5): 1117-1128, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34094823

RESUMO

Hypertension is the largest risk factor for cardiovascular disease, the leading cause of mortality worldwide. As blood pressure regulation is influenced by multiple physiological systems, hypertension cannot be attributed to a single identifiable etiology. Three decades of research into Mendelian forms of hypertension implicated alterations in the renal tubular sodium handling, particularly the distal convoluted tubule (DCT)-native, thiazide-sensitive Na-Cl cotransporter (NCC). Altered functions of the NCC have shown to have profound effects on blood pressure regulation as illustrated by the over activation and inactivation of the NCC in Gordon's and Gitelman syndromes respectively. Substantial progress has uncovered multiple factors that affect the expression and activity of the NCC. In particular, NCC activity is controlled by phosphorylation/dephosphorylation, and NCC expression is facilitated by glycosylation and negatively regulated by ubiquitination. Studies have even found parvalbumin to be an unexpected regulator of the NCC. In recent years, there have been considerable advances in our understanding of NCC control mechanisms, particularly via the pathway containing the with-no-lysine [K] (WNK) and its downstream target kinases, SPS/Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress responsive 1 (OSR1), which has led to the discovery of novel inhibitory molecules. This review summarizes the currently reported regulatory mechanisms of the NCC and discusses their potential as therapeutic targets for treating hypertension.

8.
Am J Physiol Renal Physiol ; 298(6): F1457-64, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20237235

RESUMO

Connective tissue growth factor (CTGF) plays a key role in renal fibrosis. Urinary CTGF is elevated in various renal diseases and may have biomarker potential. However, it is unknown which processes contribute to elevated urinary CTGF levels. Thus far, urinary CTGF was considered to reflect renal expression. We investigated how tubular dysfunction affects urinary CTGF levels. To study this, we administered recombinant CTGF intravenously to rodents. We used both full-length CTGF and the NH(2)-terminal fragment, since the NH(2)-fragment is the predominant form detected in urine. Renal CTGF extraction, determined by simultaneous arterial and renal vein sampling, was 18 +/- 3% for full-length CTGF and 21 +/- 1% for the NH(2)-fragment. Fractional excretion was very low for both CTGFs (0.02 +/- 0.006% and 0.10 +/- 0.02%, respectively), indicating that >99% of the extracted CTGF was metabolized by the kidney. Immunohistochemistry revealed extensive proximal tubular uptake of CTGF in apical endocytic vesicles and colocalization with megalin. Urinary CTGF was elevated in megalin- and cubilin-deficient mice but not in cubilin-deficient mice. Inhibition of tubular reabsorption by Gelofusine reduced renal uptake of CTGF and increased urinary CTGF. In healthy volunteers, Gelofusine also induced an increase of urinary CTGF excretion, comparable to the increase of beta(2)-microglobulin excretion (r = 0.99). Furthermore, urinary CTGF correlated with beta(2)-microglobulin (r = 0.85) in renal disease patients (n = 108), and only beta(2)-microglobulin emerged as an independent determinant of urinary CTGF. Thus filtered CTGF is normally reabsorbed almost completely in proximal tubules via megalin, and elevated urinary CTGF may largely reflect proximal tubular dysfunction.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/urina , Nefropatias/metabolismo , Túbulos Renais Proximais/metabolismo , Fragmentos de Peptídeos/urina , Animais , Biomarcadores/sangue , Biomarcadores/urina , Fator de Crescimento do Tecido Conjuntivo/administração & dosagem , Fator de Crescimento do Tecido Conjuntivo/sangue , Fator de Crescimento do Tecido Conjuntivo/farmacocinética , Estudos Transversais , Endocitose , Taxa de Filtração Glomerular , Humanos , Infusões Parenterais , Injeções Intravenosas , Nefropatias/fisiopatologia , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/fisiopatologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/farmacocinética , Poligelina/administração & dosagem , Ratos , Ratos Endogâmicos WKY , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão/urina , Microglobulina beta-2/urina
9.
Pflugers Arch ; 458(3): 513-24, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19189121

RESUMO

Treating spontaneously hypertensive rats (SHR) with L-arginine, taurine, and vitamins C and E (ATCE) during nephrogenesis (2 weeks before to 4 weeks after birth) persistently lowers blood pressure. Hypothetically, differential gene expression in kidney of SHR vs. normotensive Wistar-Kyoto rats (WKY) is partially corrected by maternal ATCE in SHR. Differential gene expression in 2-days, 2-weeks, and 48-week-old rats was studied using oligonucleotide chips. Transcription factor binding sites (TFBS) of differentially expressed genes were analyzed in silico. Differential gene expression varied between SHR+ATCE and SHR, suggesting both direct and indirect effects; but, few genes were modulated toward WKY level and there was little overlap between ages. TFBS analysis suggests less Elk-1-driven gene transcription in both WKY and SHR+ATCE vs. SHR at 2 days and 2 weeks. Concluding, in SHR, persistent antihypertensive effects of maternal ATCE are not primarily due to persistent corrective transcription. Less Elk-1-driven transcription at 2 days and 2 weeks may be involved.


Assuntos
Antioxidantes/administração & dosagem , Arginina/administração & dosagem , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hipertensão/metabolismo , Rim/metabolismo , Proteoma/metabolismo , Fatores de Transcrição/metabolismo , Animais , Perfilação da Expressão Gênica/métodos , Rim/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
10.
Cell Metab ; 29(5): 1092-1103.e3, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30773466

RESUMO

Daily rhythms in animal physiology are driven by endogenous circadian clocks in part through rest-activity and feeding-fasting cycles. Here, we examined principles that govern daily respiration. We monitored oxygen consumption and carbon dioxide release, as well as tissue oxygenation in freely moving animals to specifically dissect the role of circadian clocks and feeding time on daily respiration. We found that daily rhythms in oxygen and carbon dioxide are clock controlled and that time-restricted feeding restores their rhythmicity in clock-deficient mice. Remarkably, day-time feeding dissociated oxygen rhythms from carbon dioxide oscillations, whereby oxygen followed activity, and carbon dioxide was shifted and aligned with food intake. In addition, changes in carbon dioxide levels altered clock gene expression and phase shifted the clock. Collectively, our findings indicate that oxygen and carbon dioxide rhythms are clock controlled and feeding regulated and support a potential role for carbon dioxide in phase resetting peripheral clocks upon feeding.


Assuntos
Dióxido de Carbono/metabolismo , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Oxigênio/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Ingestão de Alimentos , Expressão Gênica/genética , Técnicas de Inativação de Genes , Locomoção/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células NIH 3T3 , Consumo de Oxigênio/genética , Proteínas Circadianas Period/genética , Ratos , Ratos Wistar , Respiração
11.
Nitric Oxide ; 18(4): 279-86, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18316042

RESUMO

We probe endogenous NO production in WKY rats by trapping NO with iron-dithiocarbamate complexes. The aim was to detect non-stimulated NO production in small organs like kidneys of juvenile rats. The yields of mononitrosyl Fe-dithiocarbamate complexes are small and difficult to quantify in the presence of strong contaminating signals from Cu2+-DETC complexes. We evaluate four methods to improve the detection of mononitrosyl Fe-dithiocarbamate adducts: progressive microwave saturation, tissue perfusion, spectral subtraction, and finally, reduction of the tissue with sodium dithionite. While the first three were only moderately useful, reduction was very helpful for quantification of the mononitrosyl Fe-dithiocarbamate yield. The increase in sensitivity allows the detection of non-stimulated NO release in small organs of juvenile rats.


Assuntos
Ferro/química , Óxido Nítrico/biossíntese , Óxido Nítrico/química , Tiocarbamatos/química , Envelhecimento/fisiologia , Animais , Peso Corporal , Encéfalo/metabolismo , Cobre , Espectroscopia de Ressonância de Spin Eletrônica , Rim/química , Rim/metabolismo , Fígado/química , Fígado/metabolismo , Micro-Ondas , Nitrogênio/química , Tamanho do Órgão , Ratos , Ratos Endogâmicos WKY
12.
Sci Rep ; 8(1): 16342, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397212

RESUMO

Activation of the renin-angiotensin system may initiate chronic kidney disease. We hypothesised that renal hypoxia is a consequence of hemodynamic changes induced by angiotensin II and occurs prior to development of severe renal damage. Male Sprague-Dawley rats were infused continuously with angiotensin II (350 ng/kg/min) for 8 days. Mean arterial pressure (n = 5), cortical (n = 6) and medullary (n = 7) oxygenation (pO2) were continuously recorded by telemetry and renal tissue injury was scored. Angiotensin II increased arterial pressure gradually to 150 ± 18 mmHg. This was associated with transient reduction of oxygen levels in renal cortex (by 18 ± 2%) and medulla (by 17 ± 6%) at 10 ± 2 and 6 ± 1 hours, respectively after starting infusion. Thereafter oxygen levels normalised to pre-infusion levels and were maintained during the remainder of the infusion period. In rats receiving angiotensin II, adding losartan to drinking water (300 mg/L) only induced transient increase in renal oxygenation, despite normalisation of arterial pressure. In rats, renal hypoxia is only a transient phenomenon during initiation of angiotensin II-induced hypertension.


Assuntos
Angiotensina II/farmacologia , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Pressão Arterial/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hipertensão/fisiopatologia , Cinética , Masculino , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos
13.
Front Physiol ; 8: 752, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29046642

RESUMO

Oxygen sensing mechanisms are vital for homeostasis and survival. When oxygen levels are too low (hypoxia), blood flow has to be increased, metabolism reduced, or a combination of both, to counteract tissue damage. These adjustments are regulated by local, humoral, or neural reflex mechanisms. The kidney and the carotid body are both directly sensitive to falls in the partial pressure of oxygen and trigger reflex adjustments and thus act as oxygen sensors. We hypothesize a cooperative oxygen sensing function by both the kidney and carotid body to ensure maintenance of whole body blood flow and tissue oxygen homeostasis. Under pathological conditions of severe or prolonged tissue hypoxia, these sensors may become continuously excessively activated and increase perfusion pressure chronically. Consequently, persistence of their activity could become a driver for the development of hypertension and cardiovascular disease. Hypoxia-mediated renal and carotid body afferent signaling triggers unrestrained activation of the renin angiotensin-aldosterone system (RAAS). Renal and carotid body mediated responses in arterial pressure appear to be synergistic as interruption of either afferent source has a summative effect of reducing blood pressure in renovascular hypertension. We discuss that this cooperative oxygen sensing system can activate/sensitize their own afferent transduction mechanisms via interactions between the RAAS, hypoxia inducible factor and erythropoiesis pathways. This joint mechanism supports our view point that the development of cardiovascular disease involves afferent nerve activation.

14.
Cell Metab ; 25(1): 93-101, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27773695

RESUMO

The mammalian circadian system consists of a master clock in the brain that synchronizes subsidiary oscillators in peripheral tissues. The master clock maintains phase coherence in peripheral cells through systemic cues such as feeding-fasting and temperature cycles. Here, we examined the role of oxygen as a resetting cue for circadian clocks. We continuously measured oxygen levels in living animals and detected daily rhythms in tissue oxygenation. Oxygen cycles, within the physiological range, were sufficient to synchronize cellular clocks in a HIF1α-dependent manner. Furthermore, several clock genes responded to changes in oxygen levels through HIF1α. Finally, we found that a moderate reduction in oxygen levels for a short period accelerates the adaptation of wild-type but not of HIF1α-deficient mice to the new time in a jet lag protocol. We conclude that oxygen, via HIF1α activation, is a resetting cue for circadian clocks and propose oxygen modulation as therapy for jet lag.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Oxigênio/farmacologia , Adaptação Fisiológica/genética , Animais , Células Cultivadas , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Síndrome do Jet Lag/genética , Camundongos , Células NIH 3T3
15.
Future Cardiol ; 12(3): 339-49, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27091483

RESUMO

This review introduces a new hypothesis that sympathetically mediated hypertensive diseases are caused, in the most part, by the activation of visceral afferent systems that are connected to neural circuits generating sympathetic activity. We consider how organ hypoperfusion and blood flow supply-demand mismatch might lead to both sensory hyper-reflexia and aberrant afferent tonicity. We discuss how this may drive sympatho-excitatory-positive feedback and extend across multiple organs initiating, or at least amplifying, sympathetic hyperactivity. The latter, in turn, compounds the challenge to sufficient organ blood flow through heightened vasoconstriction that both maintains and exacerbates hypertension.


Assuntos
Retroalimentação Fisiológica , Hipertensão/etiologia , Fluxo Sanguíneo Regional/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Vias Aferentes/fisiologia , Corpo Carotídeo/irrigação sanguínea , Vias Eferentes/fisiologia , Hemodinâmica , Homeostase , Humanos , Hipertensão/fisiopatologia , Rim/irrigação sanguínea , Rim/inervação , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/inervação , Resistência Vascular
16.
Am J Hypertens ; 29(1): 123-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25958302

RESUMO

BACKGROUND: Inhibition of transcription factor nuclear factor-kappa B (NFκB) is beneficial in various models of hypertension and renal disease. We hypothesized first that NFκB inhibition during renal development ameliorates hereditary hypertensive renal disease and next whether this was mediated via suppression of peroxisome proliferator-activated receptor (PPAR)γ coactivator 1α (PGC-1α). METHODS AND RESULTS: Prior to the development of renal injury in fawn-hooded hypertensive (FHH) rats, a model of hypertension, glomerular hyperfiltration, and progressive renal injury, NFkB activity, measured by nuclear protein expression of NFkB subunit p65, was enhanced twofold in 2-day-old male and female FHH kidneys as compared to normotensive Wistar-Kyoto (WKY) rats (P < 0.05). Treating FHH dams with pyrrolidine di thio carbamate (PDTC), an NFκB inhibitor, from 2 weeks before birth to 4 weeks after birth diminished NFkB activity in 2-day-FHH offspring to 2-day-WKY levels (P < 0.01). Perinatal PDTC reduced systolic blood pressure from 20 weeks onwards by on average 25 mm Hg (P < 0.001) and ameliorated proteinuria (P < 0.05) and glomerulosclerosis (P < 0.05). In kidneys of 2-day-, 2-week-, and adult offspring of PDTC-treated FHH dams, PGC-1α was induced on average by 67% (quantitative polymerase chain reaction (qPCR)) suggesting that suppression of this factor by NFkB could be involved in renal damage. Follow-up experiments with perinatal pioglitazone (Pio), a PPARγ agonist, failed to confer persistent antihypertensive or renoprotective effects. CONCLUSIONS: Perinatal inhibition of enhanced active renal NFκB in 2-day FHH had persistent antihypertensive and renoprotective effects. However, this was not the case for PPARγ stimulation. NFkB stimulation is therefore involved in renal damage in the FHH model of proteinuric renal disease by pathways other than via PPARγ.


Assuntos
Anti-Hipertensivos/uso terapêutico , Regulação da Expressão Gênica no Desenvolvimento , Hipertensão Renal/tratamento farmacológico , NF-kappa B/genética , Nefrite/prevenção & controle , RNA/genética , Animais , Animais Recém-Nascidos , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Hipertensão Renal/complicações , Hipertensão Renal/genética , Hipertensão Renal/metabolismo , Hipertensão Renal/fisiopatologia , Hipertensão Renal/prevenção & controle , Masculino , NF-kappa B/antagonistas & inibidores , NF-kappa B/biossíntese , Nefrite/genética , Nefrite/fisiopatologia , Ratos , Ratos Endogâmicos WKY , Circulação Renal
17.
Methods Mol Biol ; 1397: 93-111, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26676130

RESUMO

A relative deficiency in kidney oxygenation, i.e., renal hypoxia, may contribute to the initiation and progression of acute and chronic kidney disease. A critical barrier to investigate this is the lack of methods allowing measurement of the partial pressure of oxygen in kidney tissue for long periods in vivo. We have developed, validated, and tested a novel telemetric method that can do this. Here we provide details on the calibration, implantation, implementation for data recording, and reuse of this telemetry-based technology for measurement of medullary tissue oxygen tension in conscious, unrestrained rats. This technique provides an important additional tool for investigating the impact of renal hypoxia in biology and pathophysiology.


Assuntos
Rim/metabolismo , Consumo de Oxigênio , Telemetria/métodos , Animais , Rim/fisiopatologia , Ratos
18.
Biol Psychiatry ; 58(2): 165-71, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16038687

RESUMO

BACKGROUND: Activity-based anorexia (ABA) is considered an animal model of anorexia nervosa (AN). In ABA, scheduled feeding together with voluntary access to a running wheel results in increased running wheel activity (RWA), hypophagia, and body weight loss. Previously it was shown that leptin treatment reduced semi-starvation-induced hyperactivity in rats. The present study was performed to confirm and extend this finding, to evaluate leptin's effect on energy balance in ABA. METHODS: The effects of chronic leptin treatment (intracerebroventricular, 4 microg/day) in ABA rats, ad libitum-fed running rats, and sedentary rats exposed to ad libitum feeding or scheduled feeding were investigated. RESULTS: Leptin treatment decreased RWA in ABA rats. Additionally, leptin treatment reduced food intake and increased energy expenditure by thermogenesis in ABA rats. Ad libitum-fed running/sedentary rats or food-restricted sedentary rats did not reduce activity after leptin treatment, whereas all leptin-treated rats showed hypophagia. Body temperature was slightly increased in leptin-treated food-restricted sedentary rats. CONCLUSIONS: Although leptin treatment reduced RWA in ABA rats, it also prevented hypothermia and decreased food intake. Altogether, this resulted in a stronger negative energy balance and body weight loss in leptin-treated ABA rats.


Assuntos
Anorexia Nervosa/fisiopatologia , Regulação do Apetite/fisiologia , Metabolismo Energético/fisiologia , Leptina/fisiologia , Atividade Motora/fisiologia , Animais , Anorexia Nervosa/tratamento farmacológico , Regulação do Apetite/efeitos dos fármacos , Modelos Animais de Doenças , Ingestão de Energia/efeitos dos fármacos , Ingestão de Energia/fisiologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Hormônios/administração & dosagem , Injeções Intraventriculares , Leptina/administração & dosagem , Atividade Motora/efeitos dos fármacos , Condicionamento Físico Animal/fisiologia , Ratos , Ratos Wistar
19.
J Diabetes Res ; 2015: 539787, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26171399

RESUMO

Connective tissue growth factor (CTGF; CCN2) plays a role in the development of diabetic nephropathy (DN). Urinary CTGF (uCTGF) is elevated in DN patients and has been proposed as a biomarker for disease progression, but it is unknown which pathophysiological factors contribute to elevated uCTGF. We studied renal handling of CTGF by infusion of recombinant CTGF in diabetic mice. In addition, uCTGF was measured in type 1 DN patients and compared with glomerular and tubular dysfunction and damage markers. In diabetic mice, uCTGF was increased and fractional excretion (FE) of recombinant CTGF was substantially elevated indicating reduced tubular reabsorption. FE of recombinant CTGF correlated with excretion of endogenous CTGF. CTGF mRNA was mainly localized in glomeruli and medullary tubules. Comparison of FE of endogenous and recombinant CTGF indicated that 60% of uCTGF had a direct renal source, while 40% originated from plasma CTGF. In DN patients, uCTGF was independently associated with markers of proximal and distal tubular dysfunction and damage. In conclusion, uCTGF in DN is elevated as a result of both increased local production and reduced reabsorption due to tubular dysfunction. We submit that uCTGF is a biomarker reflecting both glomerular and tubulointerstitial hallmarks of diabetic kidney disease.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/urina , Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/urina , Túbulos Renais Distais/patologia , Túbulos Renais Proximais/patologia , Regulação para Cima , Adulto , Animais , Biomarcadores/urina , Estudos de Coortes , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Feminino , Humanos , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Túbulos Renais Distais/metabolismo , Túbulos Renais Distais/fisiopatologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/urina , Eliminação Renal , Reabsorção Renal
20.
PLoS One ; 9(2): e88596, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24533120

RESUMO

While the presence of oxidative stress in chronic kidney disease (CKD) is well established, its relation to hypertensive renal hemodynamics remains unclear. We hypothesized that once CKD is established blood pressure and renal vascular resistance (RVR) no longer depend on reactive oxygen species. CKD was induced by bilateral ablation of 2/3 of each kidney. Compared to age-matched, sham-operated controls all ablated rats showed proteinuria, decreased glomerular filtration rate (GFR), more renal damage, higher mean arterial pressure (MAP), RVR and excretion of oxidative stress markers and hydrogen peroxide, while excretion of stable nitric oxide (NO) metabolites tended to decrease. We compared MAP, RVR, GFR and fractional excretion of sodium under baseline and during acute Tempol, PEG-catalase or vehicle infusion in rats with established CKD vs. controls. Tempol caused marked reduction in MAP in controls (96±5 vs.79±4 mmHg, P<0.05) but not in CKD (130±5 vs. 127±6 mmHg). PEG-catalase reduced MAP in both groups (controls: 102±2 vs. 94±4 mmHg, P<0.05; CKD: 118±4 vs. 110±4 mmHg, P<0.05), but did not normalize MAP in CKD rats. Tempol and PEG-catalase slightly decreased RVR in both groups. Fractional excretion of sodium was increased by both Tempol and PEG-catalase in both groups. PEG-catalase decreased TBARS excretion in both groups. In sum, although oxidative stress markers were increased, MAP and RVR did not depend more on oxidative stress in CKD than in controls. Therefore reactive oxygen species appear not to be important direct determinants of hypertensive renal hemodynamics in this model of established CKD.


Assuntos
Hemodinâmica , Hipertensão/fisiopatologia , Falência Renal Crônica/fisiopatologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Pressão Sanguínea , Catalase/química , Óxidos N-Cíclicos/química , Perfilação da Expressão Gênica , Taxa de Filtração Glomerular , Peróxido de Hidrogênio/química , Rim/metabolismo , Masculino , Tamanho do Órgão , Estresse Oxidativo , Peptidil Dipeptidase A/metabolismo , Polietilenoglicóis/química , Ratos , Ratos Endogâmicos Lew , Renina/metabolismo , Marcadores de Spin , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA