Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Plant Physiol ; 190(2): 1440-1456, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35809069

RESUMO

Karrikins (KARs) are chemicals in smoke that can enhance germination of many plants. Lettuce (Lactuca sativa) cv. Grand Rapids germinates in response to nanomolar karrikinolide (KAR1). Lettuce is much less responsive to KAR2 or a mixture of synthetic strigolactone analogs, rac-GR24. We investigated the molecular basis of selective and sensitive KAR1 perception in lettuce. The lettuce genome contains two copies of KARRIKIN INSENSITIVE2 (KAI2), which in Arabidopsis (Arabidopsis thaliana) encodes a receptor that is required for KAR responses. LsKAI2b is more highly expressed than LsKAI2a in dry achenes and during early stages of imbibition. Through cross-species complementation assays in Arabidopsis, we found that an LsKAI2b transgene confers robust responses to KAR1, but LsKAI2a does not. Therefore, LsKAI2b likely mediates KAR1 responses in lettuce. We compared homology models of KAI2 proteins from lettuce and a fire-follower, whispering bells (Emmenanthe penduliflora). This identified pocket residues 96, 124, 139, and 161 as candidates that influence the ligand specificity of KAI2. Further support for the importance of these residues was found through a broader comparison of pocket residues among 281 KAI2 proteins from 184 asterid species. Almost all KAI2 proteins had either Tyr or Phe identity at position 124. Genes encoding Y124-type KAI2 are more broadly distributed in asterids than in F124-type KAI2. Substitutions at residues 96, 124, 139, and 161 in Arabidopsis KAI2 produced a broad array of responses to KAR1, KAR2, and rac-GR24. This suggests that the diverse ligand preferences observed among KAI2 proteins in plants could have evolved through relatively few mutations.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Furanos/metabolismo , Furanos/farmacologia , Germinação/genética , Hidrolases/genética , Lactuca/genética , Lactuca/metabolismo , Ligantes , Piranos , Fumaça
2.
Nat Rev Genet ; 16(5): 285-98, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25854181

RESUMO

For decades a small number of model species have rightly occupied a privileged position in laboratory experiments, but it is becoming increasingly clear that our knowledge of biology is greatly improved when informed by a broader diversity of species and evolutionary context. Arabidopsis thaliana has been the primary model organism for plants, benefiting from a high-quality reference genome sequence and resources for reverse genetics. However, recent studies have made a group of species also in the Brassicaceae family and closely related to A. thaliana a focal point for comparative molecular, genomic, phenotypic and evolutionary studies. In this Review, we emphasize how such studies complement continued study of the model plant itself, provide an evolutionary perspective and summarize our current understanding of genetic and phenotypic diversity in plants.


Assuntos
Arabidopsis/genética , Brassicaceae/genética , Evolução Molecular , Aclimatação/genética , Arabidopsis/classificação , Arabidopsis/fisiologia , Brassicaceae/classificação , Brassicaceae/fisiologia , Capsella/genética , Capsella/fisiologia , Genoma de Planta , Genômica , Modelos Genéticos , Filogenia , Poliploidia , Reprodução/genética , Reprodução Assexuada/genética , Autofertilização/genética
3.
Heredity (Edinb) ; 122(3): 294-304, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29955170

RESUMO

The equal probability of transmission of alleles from either parent during sexual reproduction is a central tenet of genetics and evolutionary biology. Yet, there are many cases where this rule is violated. The preferential transmission of alleles or genotypes is termed transmission ratio distortion (TRD). Examples of TRD have been identified in many species, implying that they are universal, but the resolution of species-wide studies of TRD are limited. We have performed a species-wide screen for TRD in over 500 segregating F2 populations of Arabidopsis thaliana using pooled reduced-representation genome sequencing. TRD was evident in up to a quarter of surveyed populations. Most populations exhibited distortion at only one genomic region, with some regions being repeatedly affected in multiple populations. Our results begin to elucidate the species-level architecture of biased transmission of genetic material in A. thaliana, and serve as a springboard for future studies into the biological basis of TRD in this species.


Assuntos
Arabidopsis/genética , Cruzamentos Genéticos , Padrões de Herança , Modelos Genéticos , Alelos , Frequência do Gene , Loci Gênicos , Genética Populacional , Genoma de Planta , Genômica/métodos , Genótipo , Plantas/genética , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
4.
Proc Natl Acad Sci U S A ; 113(46): E7317-E7326, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27803326

RESUMO

The ubiquity of nonparental hybrid phenotypes, such as hybrid vigor and hybrid inferiority, has interested biologists for over a century and is of considerable agricultural importance. Although examples of both phenomena have been subject to intense investigation, no general model for the molecular basis of nonadditive genetic variance has emerged, and prediction of hybrid phenotypes from parental information continues to be a challenge. Here we explore the genetics of hybrid phenotype in 435 Arabidopsis thaliana individuals derived from intercrosses of 30 parents in a half diallel mating scheme. We find that nonadditive genetic effects are a major component of genetic variation in this population and that the genetic basis of hybrid phenotype can be mapped using genome-wide association (GWA) techniques. Significant loci together can explain as much as 20% of phenotypic variation in the surveyed population and include examples that have both classical dominant and overdominant effects. One candidate region inherited dominantly in the half diallel contains the gene for the MADS-box transcription factor AGAMOUS-LIKE 50 (AGL50), which we show directly to alter flowering time in the predicted manner. Our study not only illustrates the promise of GWA approaches to dissect the genetic architecture underpinning hybrid performance but also demonstrates the contribution of classical dominance to genetic variance.


Assuntos
Arabidopsis/genética , Vigor Híbrido/genética , Cruzamentos Genéticos , Variação Genética , Hibridização Genética , Fenótipo
5.
Dev Biol ; 419(1): 85-98, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27554165

RESUMO

The spatiotemporal localization of the plant hormone auxin acts as a positional cue during early leaf and flower organogenesis. One of the main contributors to auxin localization is the auxin efflux carrier PIN-FORMED1 (PIN1). Phylogenetic analysis has revealed that PIN1 genes are split into two sister clades; PIN1 and the relatively uncharacterized Sister-Of-PIN1 (SoPIN1). In this paper we identify entire-2 as a loss-of-function SlSoPIN1a (Solyc10g078370) mutant in Solanum lycopersicum. The entire-2 plants are unable to specify proper leaf initiation leading to a frequent switch from the wild type spiral phyllotactic pattern to distichous and decussate patterns. Leaves in entire-2 are large and less complex and the leaflets display spatial deformities in lamina expansion, vascular development, and margin specification. During sympodial growth in entire-2 the specification of organ position and identity is greatly affected resulting in variable branching patterns on the main sympodial and inflorescence axes. To understand how SlSoPIN1a functions in establishing proper auxin maxima we used the auxin signaling reporter DR5: Venus to visualize differences in auxin localization between entire-2 and wild type. DR5: Venus visualization shows a widening of auxin localization which spreads to subepidermal tissue layers during early leaf and flower organogenesis, showing that SoPIN1 functions to focus auxin signaling to the epidermal layer. The striking spatial deformities observed in entire-2 help provide a mechanistic framework for explaining the function of the SoPIN1 clade in S.lycopersicum.


Assuntos
Flores/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Solanum lycopersicum/genética , Transporte Biológico , Códon sem Sentido , Flores/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudos de Associação Genética , Teste de Complementação Genética , Solanum lycopersicum/crescimento & desenvolvimento , Meristema/metabolismo , Família Multigênica/genética , Mutação , Peptidilprolil Isomerase de Interação com NIMA/deficiência , Peptidilprolil Isomerase de Interação com NIMA/genética , Organogênese/genética , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética
6.
Nature ; 480(7376): 245-9, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-22057020

RESUMO

Heritable epigenetic polymorphisms, such as differential cytosine methylation, can underlie phenotypic variation. Moreover, wild strains of the plant Arabidopsis thaliana differ in many epialleles, and these can influence the expression of nearby genes. However, to understand their role in evolution, it is imperative to ascertain the emergence rate and stability of epialleles, including those that are not due to structural variation. We have compared genome-wide DNA methylation among 10 A. thaliana lines, derived 30 generations ago from a common ancestor. Epimutations at individual positions were easily detected, and close to 30,000 cytosines in each strain were differentially methylated. In contrast, larger regions of contiguous methylation were much more stable, and the frequency of changes was in the same low range as that of DNA mutations. Like individual positions, the same regions were often affected by differential methylation in independent lines, with evidence for recurrent cycles of forward and reverse mutations. Transposable elements and short interfering RNAs have been causally linked to DNA methylation. In agreement, differentially methylated sites were farther from transposable elements and showed less association with short interfering RNA expression than invariant positions. The biased distribution and frequent reversion of epimutations have important implications for the potential contribution of sequence-independent epialleles to plant evolution.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA , Epigênese Genética/genética , Variação Genética , Alelos , Evolução Biológica , Citosina/metabolismo , Epigenômica , Regulação da Expressão Gênica , Genoma de Planta/genética , Fenótipo , Polimorfismo Genético
7.
PLoS Genet ; 10(11): e1004785, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25393550

RESUMO

DNA methylation is an ancient molecular modification found in most eukaryotes. In plants, DNA methylation is not only critical for transcriptionally silencing transposons, but can also affect phenotype by altering expression of protein coding genes. The extent of its contribution to phenotypic diversity over evolutionary time is, however, unclear, because of limited stability of epialleles that are not linked to DNA mutations. To dissect the relative contribution of DNA methylation to transposon surveillance and host gene regulation, we leveraged information from three species in the Brassicaceae that vary in genome architecture, Capsella rubella, Arabidopsis lyrata, and Arabidopsis thaliana. We found that the lineage-specific expansion and contraction of transposon and repeat sequences is the main driver of interspecific differences in DNA methylation. The most heavily methylated portions of the genome are thus not conserved at the sequence level. Outside of repeat-associated methylation, there is a surprising degree of conservation in methylation at single nucleotides located in gene bodies. Finally, dynamic DNA methylation is affected more by tissue type than by environmental differences in all species, but these responses are not conserved. The majority of DNA methylation variation between species resides in hypervariable genomic regions, and thus, in the context of macroevolution, is of limited phenotypic consequence.


Assuntos
Brassicaceae/genética , Metilação de DNA/genética , Epigênese Genética , Evolução Molecular , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta
8.
Mol Biol Evol ; 32(10): 2501-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26318184

RESUMO

The selfing syndrome constitutes a suite of floral and reproductive trait changes that have evolved repeatedly across many evolutionary lineages in response to the shift to selfing. Convergent evolution of the selfing syndrome suggests that these changes are adaptive, yet our understanding of the detailed molecular genetic basis of the selfing syndrome remains limited. Here, we investigate the role of cis-regulatory changes during the recent evolution of the selfing syndrome in Capsella rubella, which split from the outcrosser Capsella grandiflora less than 200 ka. We assess allele-specific expression (ASE) in leaves and flower buds at a total of 18,452 genes in three interspecific F1 C. grandiflora x C. rubella hybrids. Using a hierarchical Bayesian approach that accounts for technical variation using genomic reads, we find evidence for extensive cis-regulatory changes. On average, 44% of the assayed genes show evidence of ASE; however, only 6% show strong allelic expression biases. Flower buds, but not leaves, show an enrichment of cis-regulatory changes in genomic regions responsible for floral and reproductive trait divergence between C. rubella and C. grandiflora. We further detected an excess of heterozygous transposable element (TE) insertions near genes with ASE, and TE insertions targeted by uniquely mapping 24-nt small RNAs were associated with reduced expression of nearby genes. Our results suggest that cis-regulatory changes have been important during the recent adaptive floral evolution in Capsella and that differences in TE dynamics between selfing and outcrossing species could be important for rapid regulatory divergence in association with mating system shifts.


Assuntos
Adaptação Fisiológica/genética , Capsella/genética , Capsella/fisiologia , Flores/genética , Flores/fisiologia , Sequências Reguladoras de Ácido Nucleico/genética , Alelos , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudos de Associação Genética , Heterozigoto , Hibridização Genética , Mutagênese Insercional/genética , Fenótipo , Folhas de Planta/genética , Locos de Características Quantitativas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reprodução/genética , Autofertilização
9.
Proc Natl Acad Sci U S A ; 110(28): E2655-62, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23803858

RESUMO

Although applied over extremely short timescales, artificial selection has dramatically altered the form, physiology, and life history of cultivated plants. We have used RNAseq to define both gene sequence and expression divergence between cultivated tomato and five related wild species. Based on sequence differences, we detect footprints of positive selection in over 50 genes. We also document thousands of shifts in gene-expression level, many of which resulted from changes in selection pressure. These rapidly evolving genes are commonly associated with environmental response and stress tolerance. The importance of environmental inputs during evolution of gene expression is further highlighted by large-scale alteration of the light response coexpression network between wild and cultivated accessions. Human manipulation of the genome has heavily impacted the tomato transcriptome through directed admixture and by indirectly favoring nonsynonymous over synonymous substitutions. Taken together, our results shed light on the pervasive effects artificial and natural selection have had on the transcriptomes of tomato and its wild relatives.


Assuntos
Seleção Genética , Solanum lycopersicum/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Genes de Plantas
10.
Plant Physiol ; 165(1): 196-206, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24664206

RESUMO

Kalanchoë daigremontiana reproduces asexually by generating numerous plantlets on its leaf margins. The formation of plantlets requires the somatic initiation of organogenic and embryogenic developmental programs in the leaves. However, unlike normal embryogenesis in seeds, leaf somatic embryogenesis bypasses seed dormancy to form viable plantlets. In Arabidopsis (Arabidopsis thaliana), seed dormancy and embryogenesis are initiated by the transcription factor LEAFY COTYLEDON1 (LEC1). The K. daigremontiana ortholog of LEC1 is expressed during leaf somatic embryo development. However, KdLEC1 encodes for a LEC1-type protein that has a unique B domain, with 11 unique amino acids and a premature stop codon. Moreover, the truncated KdLEC1 protein is not functional in Arabidopsis. Here, we show that K. daigremontiana transgenic plants expressing a functional, chimeric KdLEC1 gene under the control of Arabidopsis LEC1 promoter caused several developmental defects to leaf somatic embryos, including seed dormancy characteristics. The dormant plantlets also behaved as typical dormant seeds. Transgenic plantlets accumulated oil bodies and responded to the abscisic acid biosynthesis inhibitor fluridone, which broke somatic-embryo dormancy and promoted their normal development. Our results indicate that having a mutated form of LEC1 gene in K. daigremontiana is essential to bypass dormancy in the leaf embryos and generate viable plantlets, suggesting that the loss of a functional LEC1 promotes viviparous leaf somatic embryos and thus enhances vegetative propagation in K. daigremontiana. Mutations resulting in truncated LEC1 proteins may have been of a selective advantage in creating somatic propagules, because such mutations occurred independently in several Kalanchoë species, which form plantlets constitutively.


Assuntos
Kalanchoe/fisiologia , Proteínas Mutantes/metabolismo , Proteínas de Plantas/metabolismo , Reprodução Assexuada , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Giberelinas/farmacologia , Kalanchoe/efeitos dos fármacos , Kalanchoe/genética , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Dados de Sequência Molecular , Fenótipo , Dormência de Plantas/efeitos dos fármacos , Folhas de Planta/embriologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Piridonas/farmacologia , Reprodução Assexuada/efeitos dos fármacos , Triazóis/farmacologia
11.
Plant Cell ; 24(6): 2318-27, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22722959

RESUMO

In a majority of species, leaf development is thought to proceed in a bilaterally symmetric fashion without systematic asymmetries. This is despite the left and right sides of an initiating primordium occupying niches that differ in their distance from sinks and sources of auxin. Here, we revisit an existing model of auxin transport sufficient to recreate spiral phyllotactic patterns and find previously overlooked asymmetries between auxin distribution and the centers of leaf primordia. We show that it is the direction of the phyllotactic spiral that determines the side of the leaf these asymmetries fall on. We empirically confirm the presence of an asymmetric auxin response using a DR5 reporter and observe morphological asymmetries in young leaf primordia. Notably, these morphological asymmetries persist in mature leaves, and we observe left-right asymmetries in the superficially bilaterally symmetric leaves of tomato (Solanum lycopersicum) and Arabidopsis thaliana that are consistent with modeled predictions. We further demonstrate that auxin application to a single side of a leaf primordium is sufficient to recapitulate the asymmetries we observe. Our results provide a framework to study a previously overlooked developmental axis and provide insights into the developmental constraints imposed upon leaf morphology by auxin-dependent phyllotactic patterning.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Padronização Corporal , Ácidos Indolacéticos/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Solanum lycopersicum/crescimento & desenvolvimento , Arabidopsis/metabolismo , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Genes Reporter , Ácidos Indolacéticos/farmacologia , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Folhas de Planta/efeitos dos fármacos
12.
Plant Cell ; 24(7): 3153-66, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22822208

RESUMO

Infection of crop species by parasitic plants is a major agricultural hindrance resulting in substantial crop losses worldwide. Parasitic plants establish vascular connections with the host plant via structures termed haustoria, which allow acquisition of water and nutrients, often to the detriment of the infected host. Despite the agricultural impact of parasitic plants, the molecular and developmental processes by which host/parasitic interactions are established are not well understood. Here, we examine the development and subsequent establishment of haustorial connections by the parasite dodder (Cuscuta pentagona) on tobacco (Nicotiana tabacum) plants. Formation of haustoria in dodder is accompanied by upregulation of dodder KNOTTED-like homeobox transcription factors, including SHOOT MERISTEMLESS-like (STM). We demonstrate interspecific silencing of a STM gene in dodder driven by a vascular-specific promoter in transgenic host plants and find that this silencing disrupts dodder growth. The reduced efficacy of dodder infection on STM RNA interference transgenics results from defects in haustorial connection, development, and establishment. Identification of transgene-specific small RNAs in the parasite, coupled with reduced parasite fecundity and increased growth of the infected host, demonstrates the efficacy of interspecific small RNA-mediated silencing of parasite genes. This technology has the potential to be an effective method of biological control of plant parasite infection.


Assuntos
Cuscuta/fisiologia , Nicotiana/parasitologia , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Interferência de RNA/fisiologia , RNA Interferente Pequeno/fisiologia , Arabidopsis/genética , Cuscuta/citologia , Cuscuta/genética , Cuscuta/crescimento & desenvolvimento , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Interações Hospedeiro-Parasita , Brotos de Planta/citologia , Brotos de Planta/genética , Brotos de Planta/parasitologia , Brotos de Planta/fisiologia , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/parasitologia , Feixe Vascular de Plantas/fisiologia , Plantas Geneticamente Modificadas , Transporte de RNA , RNA Interferente Pequeno/genética , Nicotiana/citologia , Nicotiana/genética , Nicotiana/fisiologia
13.
Proc Natl Acad Sci U S A ; 109(7): 2461-6, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22308502

RESUMO

Processing of microRNA (miRNA) precursors results in the release of a double-stranded miRNA/miRNA* duplex. The miRNA or guide strand, is loaded onto the Argonaute (AGO) effector, and the miRNA* or passenger strand is typically degraded. The loaded AGO-containing RNA-induced silencing complex specifically recognizes a target mRNA, leading to its degradation or translational inhibition. In plants, miRNA-mediated cleavage of a target triggers in some cases the production of secondary small interfering RNAs (siRNAs), which in turn can silence other genes in trans. This alternative pathway depends on the length of the miRNA and the specific AGO in the effector complex. However, 22-nt miRNAs are sufficient, but not essential for this pathway. Using a combination of computational and experimental approaches, we show that transitivity can be triggered when the small RNA that is not retained in AGO is 22-nt long. Moreover, we demonstrate that asymmetrically positioned bulged bases in the miRNA:miRNA* duplex, regardless of miRNA or miRNA* length, are sufficient for the initiation of transitivity. We propose that the RNA-induced silencing complex reprogramming occurs during the early steps of miRNA loading, before the miRNA duplex is disassembled and the guide strand is selected.


Assuntos
Arabidopsis/genética , MicroRNAs/genética , RNA Interferente Pequeno/biossíntese , Inativação Gênica
14.
BMC Genomics ; 15: 602, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-25030755

RESUMO

BACKGROUND: Despite having predominately deleterious fitness effects, transposable elements (TEs) are major constituents of eukaryote genomes in general and of plant genomes in particular. Although the proportion of the genome made up of TEs varies at least four-fold across plants, the relative importance of the evolutionary forces shaping variation in TE abundance and distributions across taxa remains unclear. Under several theoretical models, mating system plays an important role in governing the evolutionary dynamics of TEs. Here, we use the recently sequenced Capsella rubella reference genome and short-read whole genome sequencing of multiple individuals to quantify abundance, genome distributions, and population frequencies of TEs in three recently diverged species of differing mating system, two self-compatible species (C. rubella and C. orientalis) and their self-incompatible outcrossing relative, C. grandiflora. RESULTS: We detect different dynamics of TE evolution in our two self-compatible species; C. rubella shows a small increase in transposon copy number, while C. orientalis shows a substantial decrease relative to C. grandiflora. The direction of this change in copy number is genome wide and consistent across transposon classes. For insertions near genes, however, we detect the highest abundances in C. grandiflora. Finally, we also find differences in the population frequency distributions across the three species. CONCLUSION: Overall, our results suggest that the evolution of selfing may have different effects on TE evolution on a short and on a long timescale. Moreover, cross-species comparisons of transposon abundance are sensitive to reference genome bias, and efforts to control for this bias are key when making comparisons across species.


Assuntos
Evolução Biológica , Capsella/genética , Elementos de DNA Transponíveis/genética , Capsella/classificação , Dosagem de Genes , Frequência do Gene , Genoma de Planta , Filogenia
15.
Plant Physiol ; 161(2): 805-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23204429

RESUMO

MicroRNAs (miRNAs) are produced from double-stranded precursors, from which a short duplex is excised. The strand of the duplex that remains more abundant is usually the active form, the miRNA, while steady-state levels of the other strand, the miRNA*, are generally lower. The executive engines of miRNA-directed gene silencing are RNA-induced silencing complexes (RISCs). During RISC maturation, the miRNA/miRNA* duplex associates with the catalytic subunit, an ARGONAUTE (AGO) protein. Subsequently, the guide strand, which directs gene silencing, is retained, while the passenger strand is degraded. Under certain circumstances, the miRNA*s can be retained as guide strands. miR170 and miR171 are prototypical miRNAs in Arabidopsis (Arabidopsis thaliana) with well-defined targets. We found that the corresponding star molecules, the sequence-identical miR170* and miR171a*, have several features of active miRNAs, such as sequence conservation and AGO1 association. We confirmed that active AGO1-miR171a* complexes are common in Arabidopsis and that they trigger silencing of SU(VAR)3-9 HOMOLOG8, a new miR171a* target that was acquired very recently in the Arabidopsis lineage. Our study demonstrates that each miR171a strand can be loaded onto RISC with separate regulatory outcomes.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas Argonautas/genética , Histona-Lisina N-Metiltransferase/genética , MicroRNAs/genética , Interferência de RNA , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Histona-Lisina N-Metiltransferase/metabolismo , MicroRNAs/classificação , MicroRNAs/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
16.
Science ; 385(6705): eadl0038, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38991084

RESUMO

Direct observation is central to our understanding of adaptation, but evolution is rarely documented in a large, multicellular organism for more than a few generations. In this study, we observed evolution across a century-scale competition experiment, barley composite cross II (CCII). CCII was founded in 1929 in Davis, California, with thousands of genotypes, but we found that natural selection has massively reduced genetic diversity, leading to a single lineage constituting most of the population by generation 50. Selection favored alleles originating from climates similar to that of Davis and targeted loci contributing to reproductive development, including the barley diversification loci Vrs1, HvCEN, Ppd-H1, and Vrn-H2. Our findings point to selection as the predominant force shaping genomic variation in one of the world's oldest biological experiments.


Assuntos
Alelos , Variação Genética , Hordeum , Seleção Genética , Hordeum/genética , Genótipo , Cruzamentos Genéticos , Genoma de Planta
17.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38708794

RESUMO

Cowpea is a highly drought-adapted leguminous crop with great promise for improving agricultural sustainability and food security. Here, we report analyses derived from array-based genotyping of 2,021 accessions constituting a core subset of the world's largest cowpea collection, held at the International Institute of Tropical Agriculture (IITA) in Ibadan, Nigeria. We used this dataset to examine genetic variation and population structure in worldwide cowpea. We confirm that the primary pattern of population structure is two geographically defined subpopulations originating in West and East Africa, respectively, and that population structure is associated with shifts in phenotypic distribution. Furthermore, we establish the cowpea core collection as a resource for genome-wide association studies by mapping the genetic basis of several phenotypes, with a focus on seed coat pigmentation patterning and color. We anticipate that the genotyped IITA Cowpea Core Collection will serve as a powerful tool for mapping complex traits, facilitating the acceleration of breeding programs to enhance the resilience of this crop in the face of rapid global climate change.


Assuntos
Variação Genética , Genótipo , Fenótipo , Vigna , Vigna/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Genoma de Planta , Locos de Características Quantitativas , Genética Populacional
18.
BMC Genomics ; 14: 132, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23442375

RESUMO

BACKGROUND: One of the major open challenges in next generation sequencing (NGS) is the accurate identification of structural variants such as insertions and deletions (indels). Current methods for indel calling assign scores to different types of evidence or counter-evidence for the presence of an indel, such as the number of split read alignments spanning the boundaries of a deletion candidate or reads that map within a putative deletion. Candidates with a score above a manually defined threshold are then predicted to be true indels. As a consequence, structural variants detected in this manner contain many false positives. RESULTS: Here, we present a machine learning based method which is able to discover and distinguish true from false indel candidates in order to reduce the false positive rate. Our method identifies indel candidates using a discriminative classifier based on features of split read alignment profiles and trained on true and false indel candidates that were validated by Sanger sequencing. We demonstrate the usefulness of our method with paired-end Illumina reads from 80 genomes of the first phase of the 1001 Genomes Project ( http://www.1001genomes.org) in Arabidopsis thaliana. CONCLUSION: In this work we show that indel classification is a necessary step to reduce the number of false positive candidates. We demonstrate that missing classification may lead to spurious biological interpretations. The software is available at: http://agkb.is.tuebingen.mpg.de/Forschung/SV-M/.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL/genética , Software , Algoritmos , Arabidopsis/genética , Inteligência Artificial , Biologia Computacional
19.
Theor Appl Genet ; 126(3): 601-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23117718

RESUMO

The RXopJ4 resistance locus from the wild accession Solanum pennellii (Sp) LA716 confers resistance to bacterial spot disease of tomato (S. lycopersicum, Sl) caused by Xanthomonas perforans (Xp). RXopJ4 resistance depends on recognition of the pathogen type III effector protein XopJ4. We used a collection of Sp introgression lines (ILs) to narrow the RXopJ4 locus to a 4.2-Mb segment on the long arm of chromosome 6, encompassed by the ILs 6-2 and 6-2-2. We then adapted or developed a collection of 14 molecular markers to map on a segregating F(2) population from a cross between the susceptible parent Sl FL8000 and the resistant parent RXopJ4 8000 OC(7). In the F(2) population, a 190-kb segment between the markers J350 and J352 cosegregated with resistance. This fine mapping will enable both the identification of candidate genes and the detection of resistant plants using cosegregating markers. The RXopJ4 resistance gene(s), in combination with other recently characterized genes and a quantitative trait locus (QTL) for bacterial spot disease resistance, will likely be an effective tool for the development of durable resistance in cultivated tomato.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Solanum/genética , Cromossomos de Plantas , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Fenótipo , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Solanum/microbiologia , Xanthomonas/isolamento & purificação
20.
Front Physiol ; 14: 1125969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113693

RESUMO

Background: An elevated core temperature (Tcore) increases the risk of performance impairments and heat-related illness. Internal cooling (IC) has the potential to lower Tcore when exercising in the heat. The aim of the review was to systematically analyze the effects of IC on performance, physiological, and perceptional parameters. Methods: A systematic literature search was performed in the PubMed database on 17 December 2021. Intervention studies were included assessing the effects of IC on performance, physiological, or perceptional outcomes. Data extraction and quality assessment were conducted for the included literature. The standardized mean differences (SMD) and 95% Confidence Intervals (CI) were calculated using the inverse-variance method and a random-effects model. Results: 47 intervention studies involving 486 active subjects (13.7% female; mean age 20-42 years) were included in the meta-analysis. IC resulted in significant positive effects on time to exhaustion [SMD (95% CI) 0.40 (0.13; 0.67), p < 0.01]. IC significantly reduced Tcore [-0.19 (22120.34; -0.05), p < 0.05], sweat rate [-0.20 (-0.34; -0.06), p < 0.01], thermal sensation [-0.17 (-0.33; -0.01), p < 0.05], whereas no effects were found on skin temperature, blood lactate, and thermal comfort (p > 0.05). IC resulted in a borderline significant reduction in time trial performance [0.31 (-0.60; -0.02), p = 0.06], heart rate [-0.13 (-0.27; 0.01), p = 0.06], rate of perceived exertion [-0.16 (-0.31; -0.00), p = 0.05] and borderline increased mean power output [0.22 (0.00; 0.44), p = 0.05]. Discussion: IC has the potential to affect endurance performance and selected physiological and perceptional parameters positively. However, its effectiveness depends on the method used and the time point of administration. Future research should confirm the laboratory-based results in the field setting and involve non-endurance activities and female athletes. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42022336623.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA