RESUMO
High forest low deforestation jurisdictions (HFLDs) contain many of the world's last intact forests with historically low deforestation. Since carbon financing typically uses historical deforestation rates as baselines, HFLDs facing the prospect of future threats may receive insufficient incentives to be protected. We found that from 2002 to 2020, HFLDs (n = 310) experienced 44% higher deforestation rates than their historical baselines, and 60 HFLDs underwent periods of high deforestation (deforestation rate > 0.501%) at 0.983 ± 0.649% (mean ± SD)-a rate 7.5 times higher than the 10-y historical baseline of all HFLDs. For HFLDs to receive sufficient carbon finance requires baselines that can better reflect future deforestation trajectories of HFLDs. Using an empirical multifactorial model, we show that most contemporary HFLDs are expected to undergo higher deforestation from 2020 to 2038 than their historical baselines, with 72 HFLDs likely (>66% probability) to undergo high deforestation. Over the next 18 y, HFLDs are expected to lose 2.16 Mha y-1 of forests corresponding to 585 ± 74 MtCO2e y-1 (mean ± SE) of emissions. Efforts to protect HFLD forests from future threats will be crucial. In particular, improving baselining methods is key to ensuring that sufficient financing can flow to HFLDs to prevent deforestation.
Assuntos
Conservação dos Recursos Naturais , Florestas , Carbono , ÁrvoresRESUMO
Large-scale reforestation can potentially bring both benefits and risks to the water cycle, which needs to be better quantified under future climates to inform reforestation decisions. We identified 477 water-insecure basins worldwide accounting for 44.6% (380.2 Mha) of the global reforestation potential. As many of these basins are in the Asia-Pacific, we used regional coupled land-climate modeling for the period 2041-2070 to reveal that reforestation increases evapotranspiration and precipitation for most water-insecure regions over the Asia-Pacific. This resulted in a statistically significant increase in water yield (p < .05) for the Loess Plateau-North China Plain, Yangtze Plain, Southeast China, and Irrawaddy regions. Precipitation feedback was influenced by the degree of initial moisture limitation affecting soil moisture response and thus evapotranspiration, as well as precipitation advection from other reforested regions and moisture transport away from the local region. Reforestation also reduces the probability of extremely dry months in most of the water-insecure regions. However, some regions experience nonsignificant declines in net water yield due to heightened evapotranspiration outstripping increases in precipitation, or declines in soil moisture and advected precipitation.
Assuntos
Secas , Água , China , Solo , Ciclo HidrológicoRESUMO
The global COVID-19 pandemic has imposed restrictions on people's movement, work and access to places at multiple international, national and sub-national scales. We need a better understanding of how the varied restrictions have impacted wildlife monitoring as gaps in data continuity caused by these disruptions may limit future data use and analysis. To assess the effect of different levels of COVID-19 restrictions on both citizen science and traditional wildlife monitoring, we analyse observational records of a widespread and iconic monotreme, the Australian short-beaked echidna (Tachyglossus aculeatus), in three states of Australia. We compare citizen science to observations from biodiversity data repositories across the three states by analysing numbers of observations, coverage in protected areas, and geographic distribution using an index of remoteness and accessibility. We analyse the effect of restriction levels by comparing these data from each restriction level in 2020 with corresponding periods in 2018-2019. Our results indicate that stricter and longer restrictions reduced numbers of scientific observations while citizen science showed few effects, though there is much variation due to differences in restriction levels in each state. Geographic distribution and coverage of protected and non-protected areas were also reduced for scientific monitoring while citizen science observations were little affected. This study shows that citizen science can continue to record accurate and widely distributed species observational data, despite pandemic restrictions, and thus demonstrates the potential value of citizen science to other researchers who require reliable data during periods of disruption.
RESUMO
In the last 50 years, intensive agriculture has replaced large tracts of rainforests. Such changes in land use are driving niche-based ecological processes that determine local community assembly. However, little is known about the relative importance of these anthropogenic niche-based processes, in comparison to climatic niche-based processes and spatial processes such as dispersal limitation. In this study, we use a variation partitioning approach to determine the relative importance of land-use change (ranked value of forest loss), climatic variation (temperature and precipitation), and distance between transects, on bird beta diversity at two different spatial scales within the Western Ghats-Sri Lanka biodiversity hotspot. Our results show that the drivers of local community assembly are scale dependent. At the larger spatial scale, distance was more important than climate and land use for bird species composition, suggesting that dispersal limitation over the Palk Strait, which separates the Western Ghats and Sri Lanka, is the main driver of local community assembly. At the smaller scale, climate was more important than land use, suggesting the importance of climatic niches. Therefore, to conserve all species in a biodiversity hotspot, it is important to consider geographic barriers and climatic variation along with land-use change.
Assuntos
Biodiversidade , Aves , Animais , Florestas , Floresta Úmida , Sri LankaRESUMO
Large tracts of tropical rainforests are being converted into intensive agricultural lands. Such anthropogenic disturbances are known to reduce species turnover across horizontal distances. But it is not known if they can also reduce species turnover across vertical distances (elevation), which have steeper climatic differences. We measured turnover in birds across horizontal and vertical sampling transects in three land-use types of Sri Lanka: protected forest, reserve buffer and intensive-agriculture, from 90 to 2100 m a.s.l. Bird turnover rates across horizontal distances were similar across all habitats, and much less than vertical turnover rates. Vertical turnover rates were not similar across habitats. Forest had higher turnover rates than the other two habitats for all bird species. Buffer and intensive-agriculture had similar turnover rates, even though buffer habitats were situated at the forest edge. Therefore, our results demonstrate the crucial importance of conserving primary forest across the full elevational range available.
Assuntos
Aves , Agricultura , Animais , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Florestas , Árvores , Clima TropicalRESUMO
Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests.
Assuntos
Biodiversidade , Árvores , Clima Tropical , Animais , Conservação dos Recursos Naturais , HumanosRESUMO
Despite decades of research, ecologists continue to debate how spatial patterns of species richness arise across elevational gradients on the Earth. The equivocal results of these studies could emanate from variations in study design, sampling effort and data analysis. In this study, we demonstrate that the richness patterns of 2,781 (2,197 non-endemic and 584 endemic) angiosperm species along an elevational gradient of 300-5,300 m in the Eastern Himalaya are hump-shaped, spatial scale of extent (the proportion of elevational gradient studied) dependent and growth form specific. Endemics peaked at higher elevations than non-endemics across all growth forms (trees, shrubs, climbers, and herbs). Richness patterns were influenced by the proportional representation of the largest physiognomic group (herbs). We show that with increasing spatial scale of extent, the richness patterns change from a monotonic to a hump-shaped pattern and richness maxima shift toward higher elevations across all growth forms. Our investigations revealed that the combination of ambient energy (air temperature, solar radiation, and potential evapo-transpiration) and water availability (soil water content and precipitation) were the main drivers of elevational plant species richness patterns in the Himalaya. This study highlights the importance of factoring in endemism, growth forms, and spatial scale when investigating elevational gradients of plant species distributions and advances our understanding of how macroecological patterns arise.
Assuntos
Biodiversidade , Fenômenos Fisiológicos Vegetais , Plantas , Altitude , Ecossistema , Geografia , Índia , Desenvolvimento Vegetal , Dispersão Vegetal , TemperaturaRESUMO
The supposition that agricultural intensification results in land sparing for conservation has become central to policy formulations across the tropics. However, underlying assumptions remain uncertain and have been little explored in the context of conservation incentive schemes such as policies for Reducing Emissions from Deforestation and forest Degradation, conservation, sustainable management, and enhancement of carbon stocks (REDD+). Incipient REDD+ forest carbon policies in a number of countries propose agricultural intensification measures to replace extensive "slash-and-burn" farming systems. These may result in conservation in some contexts, but will also increase future agricultural land rents as productivity increases, creating new incentives for agricultural expansion and deforestation. While robust governance can help to ensure land sparing, we propose that conservation incentives will also have to increase over time, tracking future agricultural land rents, which might lead to runaway conservation costs. We present a conceptual framework that depicts these relationships, supported by an illustrative model of the intensification of key crops in the Democratic Republic of Congo, a leading REDD+ country. A von Thünen land rent model is combined with geographic information systems mapping to demonstrate how agricultural intensification could influence future conservation costs. Once postintensification agricultural land rents are considered, the cost of reducing forest sector emissions could significantly exceed current and projected carbon credit prices. Our analysis highlights the importance of considering escalating conservation costs from agricultural intensification when designing conservation initiatives.
Assuntos
Agricultura/economia , Conservação dos Recursos Naturais/economia , Agricultura/métodos , Biodiversidade , Carbono/química , Conservação dos Recursos Naturais/métodos , Produtos Agrícolas , República Democrática do Congo , Ecossistema , Modelos Estatísticos , Árvores , Zea maysRESUMO
Selective logging is one of the most common forms of forest use in the tropics. Although the effects of selective logging on biodiversity have been widely studied, there is little agreement on the relationship between life-history traits and tolerance to logging. In this study, we assessed how species traits and logging practices combine to determine species responses to selective logging, based on over 4000 observations of the responses of nearly 1000 bird species to selective logging across the tropics. Our analysis shows that species traits, such as feeding group and body mass, and logging practices, such as time since logging and logging intensity, interact to influence a species' response to logging. Frugivores and insectivores were most adversely affected by logging and declined further with increasing logging intensity. Nectarivores and granivores responded positively to selective logging for the first two decades, after which their abundances decrease below pre-logging levels. Larger species of omnivores and granivores responded more positively to selective logging than smaller species from either feeding group, whereas this effect of body size was reversed for carnivores, herbivores, frugivores and insectivores. Most importantly, species most negatively impacted by selective logging had not recovered approximately 40 years after logging cessation. We conclude that selective timber harvest has the potential to cause large and long-lasting changes in avian biodiversity. However, our results suggest that the impacts can be mitigated to a certain extent through specific forest management strategies such as lengthening the rotation cycle and implementing reduced impact logging.
Assuntos
Aves/fisiologia , Conservação dos Recursos Naturais , Agricultura Florestal/métodos , Animais , Biodiversidade , Cadeia Alimentar , Florestas , Modelos Teóricos , Clima TropicalRESUMO
Monitoring of animal populations is essential for conservation management. Various techniques are available to assess spatiotemporal patterns of species distribution and abundance. Nest surveys are often used for monitoring great apes. Quickly developing technologies, including unmanned aerial vehicles (UAVs) can be used to complement these ground-based surveys, especially for covering large areas rapidly. Aerial surveys have been used successfully to detect the nests of orang-utans. It is unknown if such an approach is practical for African apes, which usually build their nests at lower heights, where they might be obscured by forest canopy. In this 2-month study, UAV-derived aerial imagery was used for two distinct purposes: testing the detectability of chimpanzee nests and identifying fruiting trees used by chimpanzees in Loango National Park (Gabon). Chimpanzee nest data were collected through two approaches: we located nests on the ground and then tried to detect them in UAV photos and vice versa. Ground surveys were conducted using line transects, reconnaissance trails, and opportunistic sampling during which we detected 116 individual nests in 28 nest groups. In complementary UAV images we detected 48% of the individual nests (68% of nest groups) in open coastal forests and 8% of individual nests (33% of nest groups) in closed canopy inland forests. The key factor for nest detectability in UAV imagery was canopy openness. Data on fruiting trees were collected from five line transects. In 122 UAV images 14 species of trees (N = 433) were identified, alongside 37 tree species (N = 205) in complementary ground surveys. Relative abundance of common tree species correlated between ground and UAV surveys. We conclude that UAVs have great potential as a rapid assessment tool for detecting chimpanzee presence in forest with open canopy and assessing fruit tree availability. UAVs may have limited applicability for nest detection in closed canopy forest.
Assuntos
Frutas , Comportamento de Nidação , Pan troglodytes/fisiologia , Tecnologia de Sensoriamento Remoto/métodos , Animais , Ecossistema , Florestas , Gabão , ÁrvoresRESUMO
Rising global demands for food and biofuels are driving forest clearance in the tropics. Oil-palm expansion contributes to biodiversity declines and carbon emissions in Southeast Asia. However, the magnitudes of these impacts remain largely unquantified until now. We produce a 250-m spatial resolution map of closed canopy oil-palm plantations in the lowlands of Peninsular Malaysia (2 million ha), Borneo (2.4 million ha), and Sumatra (3.9 million ha). We demonstrate that 6% (or ≈880,000 ha) of tropical peatlands in the region had been converted to oil-palm plantations by the early 2000s. Conversion of peatswamp forests to oil palm led to biodiversity declines of 1% in Borneo (equivalent to four species of forest-dwelling birds), 3.4% in Sumatra (16 species), and 12.1% in Peninsular Malaysia (46 species). This land-use change also contributed to the loss of ≈140 million Mg of aboveground biomass carbon, and annual emissions of ≈4.6 million Mg of belowground carbon from peat oxidation. Additionally, the loss of peatswamp forests implies the loss of carbon sequestration service through peat accumulation, which amounts to ≈660,000 Mg of carbon annually. By 2010, 2.3 million ha of peatswamp forests were clear-felled, and currently occur as degraded lands. Reforestation of these clearings could enhance biodiversity by up to ≈20%, whereas oil-palm establishment would exacerbate species losses by up to ≈12%. To safeguard the region's biodiversity and carbon stocks, conservation and reforestation efforts should target Central Kalimantan, Riau, and West Kalimantan, which retain three-quarters (3.9 million ha) of the remaining peatswamp forests in Southeast Asia.
Assuntos
Arecaceae/crescimento & desenvolvimento , Biocombustíveis , Árvores/crescimento & desenvolvimento , Sudeste AsiáticoRESUMO
Protected areas (PAs) play a crucial role in biodiversity conservation and climate change mitigation.1,2 However, ineffective management can lead to biodiversity loss and carbon emissions from deforestation.3,4,5,6 To address this issue and explore viable solutions, we assessed the impact of PA establishment on avoided deforestation in 80 Southeast Asian PAs using the synthetic control approach.7,8 Our results show that 36 PAs successfully prevented 78,910 ha of deforestation. However, the remaining 44 PAs lost 72,497 ha of forest, impacting the habitat of 226 threatened bird and mammal species. Effective management of these reserves could have potentially avoided up to 2.07 MtCO2e yr-1 in carbon emissions. We estimate that at least $17 million USD per year in additional funding is required to better manage these 44 ineffective PAs and reduce future emissions. Furthermore, we demonstrate that carbon markets have the potential to generate these funds by reducing carbon emissions from deforestation within protected areas. Our findings emphasize that improving PA management is an essential nature-based solution for conserving biodiversity and mitigating climate change.
Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/economia , Sudeste Asiático , Animais , Aves , Florestas , Ecossistema , MamíferosRESUMO
Palm oil is the world's most important vegetable oil in terms of production quantity. Indonesia, the world's largest palm-oil producer, plans to double its production by 2020, with unclear implications for the other national priorities of food (rice) production, forest and biodiversity protection, and carbon conservation. We modeled the outcomes of alternative development scenarios and show that every single-priority scenario had substantial tradeoffs associated with other priorities. The exception was a hybrid approach wherein expansion targeted degraded and agricultural lands that are most productive for oil palm, least suitable for food cultivation, and contain the lowest carbon stocks. This approach avoided any loss in forest or biodiversity and substantially ameliorated the impacts of oil-palm expansion on carbon stocks (limiting net loss to 191.6 million tons) and annual food production capacity (loss of 1.9 million tons). Our results suggest that the environmental and land-use tradeoffs associated with oil-palm expansion can be largely avoided through the implementation of a properly planned and spatially explicit development strategy.
RESUMO
Despite the looming land scarcity for agriculture, cropland abandonment is widespread globally. Abandoned cropland can be reused to support food security and climate change mitigation. Here, we investigate the potentials and trade-offs of using global abandoned cropland for recultivation and restoring forests by natural regrowth, with spatially-explicit modelling and scenario analysis. We identify 101 Mha of abandoned cropland between 1992 and 2020, with a capability of concurrently delivering 29 to 363 Peta-calories yr-1 of food production potential and 290 to 1,066 MtCO2 yr-1 of net climate change mitigation potential, depending on land-use suitability and land allocation strategies. We also show that applying spatial prioritization is key to maximizing the achievable potentials of abandoned cropland and demonstrate other possible approaches to further increase these potentials. Our findings offer timely insights into the potentials of abandoned cropland and can inform sustainable land management to buttress food security and climate goals.
Assuntos
Agricultura , Mudança Climática , Produtos Agrícolas , Florestas , Segurança Alimentar , Conservação dos Recursos NaturaisRESUMO
Biodiversity conservation is increasingly being recognized as an important co-benefit in climate change mitigation programmes that use nature-based climate solutions. However, the climate co-benefits of biodiversity conservation interventions, such as habitat protection and restoration, remain understudied. Here we estimate the forest carbon storage co-benefits of a national policy intervention for tiger (Panthera tigris) conservation in India. We used a synthetic control approach to model avoided forest loss and associated carbon emissions reductions in protected areas that underwent enhanced protection for tiger conservation. Over a third of the analysed reserves showed significant but mixed effects, where 24% of all reserves successfully reduced the rate of deforestation and the remaining 9% reported higher-than-expected forest loss. The policy had a net positive benefit with over 5,802 hectares of averted forest loss, corresponding to avoided emissions of 1.08 ± 0.51 MtCO2 equivalent between 2007 and 2020. This translated to US$92.55 ± 43.56 million in ecosystem services from the avoided social cost of emissions and potential revenue of US$6.24 ± 2.94 million in carbon offsets. Our findings offer an approach to quantitatively track the carbon sequestration co-benefits of a species conservation strategy and thus help align the objectives of climate action and biodiversity conservation.
Assuntos
Ecossistema , Tigres , Animais , Florestas , Biodiversidade , Carbono , Conservação dos Recursos NaturaisRESUMO
Carbon credits generated through jurisdictional-scale avoided deforestation projects require accurate estimates of deforestation emission baselines, but there are serious challenges to their robustness. We assessed the variability, accuracy, and uncertainty of baselining methods by applying sensitivity and variable importance analysis on a range of typically-used methods and parameters for 2,794 jurisdictions worldwide. The median jurisdiction's deforestation emission baseline varied by 171% (90% range: 87%-440%) of its mean, with a median forecast error of 0.778 times (90% range: 0.548-3.56) the actual deforestation rate. Moreover, variable importance analysis emphasised the strong influence of the deforestation projection approach. For the median jurisdiction, 68.0% of possible methods (90% range: 61.1%-85.6%) exceeded 15% uncertainty. Tropical and polar biomes exhibited larger uncertainties in carbon estimations. The use of sensitivity analyses, multi-model, and multi-source ensemble approaches could reduce variabilities and biases. These findings provide a roadmap for improving baseline estimations to enhance carbon market integrity and trust.
RESUMO
Policy makers across the tropics propose that carbon finance could provide incentives for forest frontier communities to transition away from swidden agriculture (slash-and-burn or shifting cultivation) to other systems that potentially reduce emissions and/or increase carbon sequestration. However, there is little certainty regarding the carbon outcomes of many key land-use transitions at the center of current policy debates. Our meta-analysis of over 250 studies reporting above- and below-ground carbon estimates for different land-use types indicates great uncertainty in the net total ecosystem carbon changes that can be expected from many transitions, including the replacement of various types of swidden agriculture with oil palm, rubber, or some other types of agroforestry systems. These transitions are underway throughout Southeast Asia, and are at the heart of REDD+ debates. Exceptions of unambiguous carbon outcomes are the abandonment of any type of agriculture to allow forest regeneration (a certain positive carbon outcome) and expansion of agriculture into mature forest (a certain negative carbon outcome). With respect to swiddening, our meta-analysis supports a reassessment of policies that encourage land-cover conversion away from these [especially long-fallow] systems to other more cash-crop-oriented systems producing ambiguous carbon stock changes - including oil palm and rubber. In some instances, lengthening fallow periods of an existing swidden system may produce substantial carbon benefits, as would conversion from intensely cultivated lands to high-biomass plantations and some other types of agroforestry. More field studies are needed to provide better data of above- and below-ground carbon stocks before informed recommendations or policy decisions can be made regarding which land-use regimes optimize or increase carbon sequestration. As some transitions may negatively impact other ecosystem services, food security, and local livelihoods, the entire carbon and noncarbon benefit stream should also be taken into account before prescribing transitions with ambiguous carbon benefits.
RESUMO
Protected areas safeguard biodiversity, ensure ecosystem functioning, and deliver ecosystem services to communities. However, only ~16% of the world's land area is under some form of protection, prompting international calls to protect at least 30% by 2030. We modeled the outcomes of achieving this 30 × 30 target for terrestrial biodiversity conservation, climate change mitigation, and nutrient regulation. We find that the additional ~2.8 million ha of habitat that would be protected would benefit 1134 ± 175 vertebrate species whose habitats currently lack any form of protection, as well as contribute to either avoided carbon emissions or carbon dioxide sequestration, equivalent to 10.9 ± 3.6 GtCO2 year-1 (28.4 ± 9.4% of the global nature-based climate-change mitigation potential). Furthermore, expansion of the protected area network would increase its ability to regulate water quality and mitigate nutrient pollution by 142.5 ± 31.0 MtN year-1 (28.5 ± 6.2% of the global nutrient regulation potential).
RESUMO
Natural climate solutions (NCS) are an essential complement to climate mitigation and have been increasingly incorporated into international mitigation strategies. Yet, with the ongoing population growth, allocating natural areas for NCS may compete with other socioeconomic priorities, especially urban development and food security. Here, we projected the impacts of land-use competition incurred by cropland and urban expansion on the climate mitigation potential of NCS. We mapped the areas available for implementing 9 key NCS strategies and estimated their climate change mitigation potential. Then, we overlaid these areas with future cropland and urban expansion maps projected under three Shared Socioeconomic Pathway (SSP) scenarios (2020-2100) and calculated the resulting mitigation potential loss of each selected NCS strategy. Our results estimate a substantial reduction, 0.3-2.8 GtCO2 yr-1 or 4-39 %, in NCS mitigation potential, of which cropland expansion for fulfilling future food demand is the primary cause. This impact is particularly severe in the tropics where NCS hold the most abundant mitigation potential. Our findings highlight immediate actions prioritized to tropical areas are important to best realize NCS and are key to developing realistic and sustainable climate policies.