RESUMO
Preclinical evidence suggests that the actions of ovarian steroid hormones and brain-derived neurotrophic factor (BDNF) are highly convergent on brain function. Studies in humanized mice document an interaction between estrus cycle-related changes in estradiol secretion and BDNF Val66Met genotype on measures of hippocampal function and anxiety-like behavior. We believe our multimodal imaging data provide the first demonstration in women that the effects of the BDNF Val/Met polymorphism on hippocampal function are selectively modulated by estradiol. In a 6-month pharmacological hormone manipulation protocol, healthy, regularly menstruating, asymptomatic women completed positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) scans while performing the n-back working memory task during three hormone conditions: ovarian suppression induced by the gonadotropin-releasing hormone agonist, leuprolide acetate; leuprolide plus estradiol; and leuprolide plus progesterone. For each of the three hormone conditions, a discovery data set was obtained with oxygen-15 water regional cerebral blood flow PET in 39 healthy women genotyped for BDNF Val66Met, and a confirmatory data set was obtained with fMRI in 27 women. Our results, in close agreement across the two imaging platforms, demonstrate an ovarian hormone-by-BDNF interaction on working memory-related hippocampal function (PET: F2,37=9.11, P=0.00026 uncorrected, P=0.05, familywise error corrected with small volume correction; fMRI: F2,25=5.43, P=0.01, uncorrected) that reflects differential hippocampal recruitment in Met carriers but only in the presence of estradiol. These findings have clinical relevance for understanding the neurobiological basis of individual differences in the cognitive and behavioral effects of ovarian steroids in women, and may provide a neurogenetic framework for understanding neuropsychiatric disorders related to reproductive hormones as well as illnesses with sex differences in disease expression and course.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Hipocampo/metabolismo , Memória de Curto Prazo/fisiologia , Adulto , Circulação Cerebrovascular , Método Duplo-Cego , Estradiol/administração & dosagem , Estradiol/sangue , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Leuprolida/farmacologia , Imageamento por Ressonância Magnética , Metionina/genética , Pessoa de Meia-Idade , Imagem Multimodal/métodos , Neuroimagem/métodos , Testes Neuropsicológicos , Ovário/metabolismo , Polimorfismo de Nucleotídeo Único , Tomografia por Emissão de Pósitrons , Progesterona/administração & dosagem , Progesterona/sangue , Distribuição Aleatória , Supositórios , Valina/genéticaRESUMO
A Val(66)Met single-nucleotide polymorphism (SNP) in the brain-derived neurotrophic factor (BDNF) gene impairs activity-dependent BDNF release in cultured hippocampal neurons and predicts impaired memory and exaggerated basal hippocampal activity in healthy humans. Several clinical genetic association studies along with multi-modal evidence for hippocampal dysfunction in schizophrenia indirectly suggest a relationship between schizophrenia and genetically determined BDNF function in the hippocampus. To directly test this hypothesized relationship, we studied 47 medication-free patients with schizophrenia or schizoaffective disorder and 74 healthy comparison individuals with genotyping for the Val(66)Met SNP and [(15)O]H(2)O positron emission tomography (PET) to measure resting and working memory-related hippocampal regional cerebral blood flow (rCBF). In patients, harboring a Met allele was associated with significantly less hippocampal rCBF. This finding was opposite to the genotype effect seen in healthy participants, resulting in a significant diagnosis-by-genotype interaction. Exploratory analyses of interregional resting rCBF covariation revealed a specific and significant diagnosis-by-genotype interaction effect on hippocampal-prefrontal coupling. A diagnosis-by-genotype interaction was also found for working memory-related hippocampal rCBF change, which was uniquely attenuated in Met allele-carrying patients. Thus, both task-independent and task-dependent hippocampal neurophysiology accommodates a Met allelic background differently in patients with schizophrenia than in control subjects. Potentially consistent with the hypothesis that cellular sequelae of the BDNF Val(66)Met SNP interface with aspects of schizophrenic hippocampal and frontotemporal dysfunction, these results warrant future investigation to understand the contributions of unique patient trait or state variables to these robust interactions.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética , Esquizofrenia/patologia , Adulto , Técnicas de Apoio para a Decisão , Óxido de Deutério , Feminino , Genótipo , Hipocampo/irrigação sanguínea , Hipocampo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo/fisiologia , Metionina/genética , Testes Neuropsicológicos , Oxigênio/sangue , Tomografia por Emissão de Pósitrons , Descanso/fisiologia , Valina/genética , Adulto JovemAssuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Hipocampo/patologia , Esquizofrenia/genética , Estudos de Coortes , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Metionina/genética , Polimorfismo de Nucleotídeo Único/genética , Tomografia por Emissão de Pósitrons , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/genética , Esquizofrenia/diagnóstico por imagem , Valina/genéticaRESUMO
OBJECTIVE: Disturbed neuronal interactions may be involved in schizophrenia because it is without clear regional pathology. Aberrant connectivity is further suggested by theoretical formulations and neurochemical and neuroanatomical data. The authors applied to schizophrenia a recently available functional neuroimaging analytic method that permits characterization of cooperative action on the systems level. METHOD: Thirteen medication-free patients and 13 matched healthy comparison subjects performed a working memory (n-back) task and sensorimotor baseline task during positron emission tomography. "Functional connectivity" patterns, reflecting distributed correlated activity that differed most between groups, were extracted by a canonical variates analysis. RESULTS: More than half the variance was explained by a single pattern showing inferotemporal, (para-)hippocampal, and cerebellar loadings for patients versus dorsolateral prefrontal and anterior cingulate activity for comparison subjects. Expression of this pattern perfectly separated all patient scans from comparison scans, thus showing promise as a trait marker. This result was validated prospectively by successfully classifying unrelated scans from the same patients and data from a new cohort. An additional 19% of variance corresponded to the pattern activated by the working memory task. Expression of this pattern was more variable in patients during working memory but not the control condition, suggesting inability to sustain a task-adequate neural network, consistent with the disconnection hypothesis. CONCLUSIONS: Pronounced disruptions of distributed cooperative activity in schizophrenia were found. A pattern showing disturbed frontotemporal interactions showed promise as a trait marker and may be useful for future investigations.