Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 136(3): 420-34, 2009 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-19203578

RESUMO

The biological response to DNA double-strand breaks acts to preserve genome integrity. Individuals bearing inactivating mutations in components of this response exhibit clinical symptoms that include cellular radiosensitivity, immunodeficiency, and cancer predisposition. The archetype for such disorders is Ataxia-Telangiectasia caused by biallelic mutation in ATM, a central component of the DNA damage response. Here, we report that the ubiquitin ligase RNF168 is mutated in the RIDDLE syndrome, a recently discovered immunodeficiency and radiosensitivity disorder. We show that RNF168 is recruited to sites of DNA damage by binding to ubiquitylated histone H2A. RNF168 acts with UBC13 to amplify the RNF8-dependent histone ubiquitylation by targeting H2A-type histones and by promoting the formation of lysine 63-linked ubiquitin conjugates. These RNF168-dependent chromatin modifications orchestrate the accumulation of 53BP1 and BRCA1 to DNA lesions, and their loss is the likely cause of the cellular and developmental phenotypes associated with RIDDLE syndrome.


Assuntos
Dano ao DNA , Síndromes de Imunodeficiência/metabolismo , Transdução de Sinais , Ubiquitina/metabolismo , Linhagem Celular , Histonas/metabolismo , Humanos , Síndromes de Imunodeficiência/genética , Tolerância a Radiação , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Nucleic Acids Res ; 47(D1): D529-D541, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30476227

RESUMO

The Biological General Repository for Interaction Datasets (BioGRID: https://thebiogrid.org) is an open access database dedicated to the curation and archival storage of protein, genetic and chemical interactions for all major model organism species and humans. As of September 2018 (build 3.4.164), BioGRID contains records for 1 598 688 biological interactions manually annotated from 55 809 publications for 71 species, as classified by an updated set of controlled vocabularies for experimental detection methods. BioGRID also houses records for >700 000 post-translational modification sites. BioGRID now captures chemical interaction data, including chemical-protein interactions for human drug targets drawn from the DrugBank database and manually curated bioactive compounds reported in the literature. A new dedicated aspect of BioGRID annotates genome-wide CRISPR/Cas9-based screens that report gene-phenotype and gene-gene relationships. An extension of the BioGRID resource called the Open Repository for CRISPR Screens (ORCS) database (https://orcs.thebiogrid.org) currently contains over 500 genome-wide screens carried out in human or mouse cell lines. All data in BioGRID is made freely available without restriction, is directly downloadable in standard formats and can be readily incorporated into existing applications via our web service platforms. BioGRID data are also freely distributed through partner model organism databases and meta-databases.


Assuntos
Bases de Dados Factuais , Animais , Sistemas CRISPR-Cas , Curadoria de Dados , Descoberta de Drogas , Genes , Humanos , Camundongos , Mapeamento de Interação de Proteínas
3.
Nucleic Acids Res ; 45(D1): D369-D379, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-27980099

RESUMO

The Biological General Repository for Interaction Datasets (BioGRID: https://thebiogrid.org) is an open access database dedicated to the annotation and archival of protein, genetic and chemical interactions for all major model organism species and humans. As of September 2016 (build 3.4.140), the BioGRID contains 1 072 173 genetic and protein interactions, and 38 559 post-translational modifications, as manually annotated from 48 114 publications. This dataset represents interaction records for 66 model organisms and represents a 30% increase compared to the previous 2015 BioGRID update. BioGRID curates the biomedical literature for major model organism species, including humans, with a recent emphasis on central biological processes and specific human diseases. To facilitate network-based approaches to drug discovery, BioGRID now incorporates 27 501 chemical-protein interactions for human drug targets, as drawn from the DrugBank database. A new dynamic interaction network viewer allows the easy navigation and filtering of all genetic and protein interaction data, as well as for bioactive compounds and their established targets. BioGRID data are directly downloadable without restriction in a variety of standardized formats and are freely distributed through partner model organism databases and meta-databases.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Proteínas , Animais , Biologia Computacional/métodos , Curadoria de Dados , Mineração de Dados , Humanos , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Software
4.
Mol Cell ; 40(4): 619-31, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21055983

RESUMO

Genome integrity is jeopardized each time DNA replication forks stall or collapse. Here we report the identification of a complex composed of MMS22L (C6ORF167) and TONSL (NFKBIL2) that participates in the recovery from replication stress. MMS22L and TONSL are homologous to yeast Mms22 and plant Tonsoku/Brushy1, respectively. MMS22L-TONSL accumulates at regions of ssDNA associated with distressed replication forks or at processed DNA breaks, and its depletion results in high levels of endogenous DNA double-strand breaks caused by an inability to complete DNA synthesis after replication fork collapse. Moreover, cells depleted of MMS22L are highly sensitive to camptothecin, a topoisomerase I poison that impairs DNA replication progression. Finally, MMS22L and TONSL are necessary for the efficient formation of RAD51 foci after DNA damage, and their depletion impairs homologous recombination. These results indicate that MMS22L and TONSL are genome caretakers that stimulate the recombination-dependent repair of stalled or collapsed replication forks.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Recombinação Genética , Estresse Fisiológico , Sobrevivência Celular , Quebras de DNA de Cadeia Dupla , Células HeLa , Humanos , NF-kappa B/química , Ligação Proteica , Fase S , Moldes Genéticos
5.
Nucleic Acids Res ; 43(Database issue): D470-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25428363

RESUMO

The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein interactions curated from the primary biomedical literature for all major model organism species and humans. As of September 2014, the BioGRID contains 749,912 interactions as drawn from 43,149 publications that represent 30 model organisms. This interaction count represents a 50% increase compared to our previous 2013 BioGRID update. BioGRID data are freely distributed through partner model organism databases and meta-databases and are directly downloadable in a variety of formats. In addition to general curation of the published literature for the major model species, BioGRID undertakes themed curation projects in areas of particular relevance for biomedical sciences, such as the ubiquitin-proteasome system and various human disease-associated interaction networks. BioGRID curation is coordinated through an Interaction Management System (IMS) that facilitates the compilation interaction records through structured evidence codes, phenotype ontologies, and gene annotation. The BioGRID architecture has been improved in order to support a broader range of interaction and post-translational modification types, to allow the representation of more complex multi-gene/protein interactions, to account for cellular phenotypes through structured ontologies, to expedite curation through semi-automated text-mining approaches, and to enhance curation quality control.


Assuntos
Bases de Dados Genéticas , Redes Reguladoras de Genes , Mapeamento de Interação de Proteínas , Ácido Araquidônico/metabolismo , Doença/genética , Humanos , Internet
6.
Nucleic Acids Res ; 41(Database issue): D816-23, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23203989

RESUMO

The Biological General Repository for Interaction Datasets (BioGRID: http//thebiogrid.org) is an open access archive of genetic and protein interactions that are curated from the primary biomedical literature for all major model organism species. As of September 2012, BioGRID houses more than 500 000 manually annotated interactions from more than 30 model organisms. BioGRID maintains complete curation coverage of the literature for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the model plant Arabidopsis thaliana. A number of themed curation projects in areas of biomedical importance are also supported. BioGRID has established collaborations and/or shares data records for the annotation of interactions and phenotypes with most major model organism databases, including Saccharomyces Genome Database, PomBase, WormBase, FlyBase and The Arabidopsis Information Resource. BioGRID also actively engages with the text-mining community to benchmark and deploy automated tools to expedite curation workflows. BioGRID data are freely accessible through both a user-defined interactive interface and in batch downloads in a wide variety of formats, including PSI-MI2.5 and tab-delimited files. BioGRID records can also be interrogated and analyzed with a series of new bioinformatics tools, which include a post-translational modification viewer, a graphical viewer, a REST service and a Cytoscape plugin.


Assuntos
Bases de Dados Genéticas , Redes Reguladoras de Genes , Mapeamento de Interação de Proteínas , Arabidopsis/genética , Arabidopsis/metabolismo , Humanos , Internet , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Interface Usuário-Computador
7.
Protein Sci ; 30(1): 187-200, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33070389

RESUMO

The BioGRID (Biological General Repository for Interaction Datasets, thebiogrid.org) is an open-access database resource that houses manually curated protein and genetic interactions from multiple species including yeast, worm, fly, mouse, and human. The ~1.93 million curated interactions in BioGRID can be used to build complex networks to facilitate biomedical discoveries, particularly as related to human health and disease. All BioGRID content is curated from primary experimental evidence in the biomedical literature, and includes both focused low-throughput studies and large high-throughput datasets. BioGRID also captures protein post-translational modifications and protein or gene interactions with bioactive small molecules including many known drugs. A built-in network visualization tool combines all annotations and allows users to generate network graphs of protein, genetic and chemical interactions. In addition to general curation across species, BioGRID undertakes themed curation projects in specific aspects of cellular regulation, for example the ubiquitin-proteasome system, as well as specific disease areas, such as for the SARS-CoV-2 virus that causes COVID-19 severe acute respiratory syndrome. A recent extension of BioGRID, named the Open Repository of CRISPR Screens (ORCS, orcs.thebiogrid.org), captures single mutant phenotypes and genetic interactions from published high throughput genome-wide CRISPR/Cas9-based genetic screens. BioGRID-ORCS contains datasets for over 1,042 CRISPR screens carried out to date in human, mouse and fly cell lines. The biomedical research community can freely access all BioGRID data through the web interface, standardized file downloads, or via model organism databases and partner meta-databases.


Assuntos
COVID-19/genética , Bases de Dados Factuais , Mapeamento de Interação de Proteínas , Proteínas/genética , Animais , COVID-19/virologia , Humanos , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidade , Interface Usuário-Computador
8.
J Cell Biol ; 171(3): 447-58, 2005 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-16260499

RESUMO

Mammalian MutL homologues function in DNA mismatch repair (MMR) after replication errors and in meiotic recombination. Both functions are initiated by a heterodimer of MutS homologues specific to either MMR (MSH2-MSH3 or MSH2-MSH6) or crossing over (MSH4-MSH5). Mutations of three of the four MutL homologues (Mlh1, Mlh3, and Pms2) result in meiotic defects. We show herein that two distinct complexes involving MLH3 are formed during murine meiosis. The first is a stable association between MLH3 and MLH1 and is involved in promoting crossing over in conjunction with MSH4-MSH5. The second complex involves MLH3 together with MSH2-MSH3 and localizes to repetitive sequences at centromeres and the Y chromosome. This complex is up-regulated in Pms2-/- males, but not females, providing an explanation for the sexual dimorphism seen in Pms2-/- mice. The association of MLH3 with repetitive DNA sequences is coincident with MSH2-MSH3 and is decreased in Msh2-/- and Msh3-/- mice, suggesting a novel role for the MMR family in the maintenance of repeat unit integrity during mammalian meiosis.


Assuntos
Proteínas de Transporte/metabolismo , Prófase Meiótica I , Proteína 2 Homóloga a MutS/metabolismo , Cromossomo Y/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/metabolismo , Centrômero/genética , Centrômero/fisiologia , Centrômero/ultraestrutura , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Masculino , Meiose , Camundongos , Camundongos Knockout , Microscopia Imunoeletrônica , Endonuclease PMS2 de Reparo de Erro de Pareamento , Proteína 1 Homóloga a MutL , Proteínas MutL , Proteína 2 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas/genética , Proteínas/metabolismo , Espermatócitos/fisiologia , Espermatócitos/ultraestrutura , Cromossomo Y/genética , Cromossomo Y/ultraestrutura
9.
Curr Biol ; 16(8): R296-9, 2006 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-16631579

RESUMO

DNA polymerase zeta and Rev1 play key roles in replication past DNA lesions. New work shows that the yeast checkpoint kinase Mec1 recruits a complex consisting of polymerase zeta and Rev1 to DNA double-strand breaks. This study highlights the role of polymerases that mediate translesion synthesis in the response to DNA double-strand breaks.


Assuntos
Reparo do DNA/fisiologia , DNA Fúngico/biossíntese , Nucleotidiltransferases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases
10.
Cold Spring Harb Protoc ; 2016(1): pdb.prot088880, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26729909

RESUMO

The BioGRID database is an extensive repository of curated genetic and protein interactions for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and the yeast Candida albicans SC5314, as well as for several other model organisms and humans. This protocol describes how to use the BioGRID website to query genetic or protein interactions for any gene of interest, how to visualize the associated interactions using an embedded interactive network viewer, and how to download data files for either selected interactions or the entire BioGRID interaction data set.


Assuntos
Bases de Dados Genéticas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Redes Reguladoras de Genes , Animais , Internet , Mapeamento de Interação de Proteínas , Leveduras/metabolismo
11.
Cold Spring Harb Protoc ; 2016(1): pdb.top080754, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26729913

RESUMO

The Biological General Repository for Interaction Datasets (BioGRID) is a freely available public database that provides the biological and biomedical research communities with curated protein and genetic interaction data. Structured experimental evidence codes, an intuitive search interface, and visualization tools enable the discovery of individual gene, protein, or biological network function. BioGRID houses interaction data for the major model organism species--including yeast, nematode, fly, zebrafish, mouse, and human--with particular emphasis on the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe as pioneer eukaryotic models for network biology. BioGRID has achieved comprehensive curation coverage of the entire literature for these two major yeast models, which is actively maintained through monthly curation updates. As of September 2015, BioGRID houses approximately 335,400 biological interactions for budding yeast and approximately 67,800 interactions for fission yeast. BioGRID also supports an integrated posttranslational modification (PTM) viewer that incorporates more than 20,100 yeast phosphorylation sites curated through its sister database, the PhosphoGRID.


Assuntos
Bases de Dados Genéticas/estatística & dados numéricos , Redes Reguladoras de Genes , Mapeamento de Interação de Proteínas , Animais , Humanos , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Leveduras/genética , Leveduras/metabolismo
12.
Genes (Basel) ; 2(1): 260-79, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21931878

RESUMO

Meiosis is a highly conserved process, which is stringently regulated in all organisms, from fungi through to humans. Two major events define meiosis in eukaryotes. The first is the pairing, or synapsis, of homologous chromosomes and the second is the exchange of genetic information in a process called meiotic recombination. Synapsis is mediated by the meiosis-specific synaptonemal complex structure in combination with the cohesins that tether sister chromatids together along chromosome arms through prophase I. Previously, we identified FKBP6 as a novel component of the mammalian synaptonemal complex. Further studies demonstrated an interaction between FKBP6 and the NIMA-related kinase-1, NEK1. To further investigate the role of NEK1 in mammalian meiosis, we have examined gametogenesis in the spontaneous mutant, Nek1kat2J. Homozygous mutant animals show decreased testis size, defects in testis morphology, and in cohesin removal at late prophase I of meiosis, causing complete male infertility. Cohesin protein SMC3 remains localized to the meiotic chromosome cores at diplonema in the Nek1 mutant, and also in the related Fkbp6 mutant, while in wild type cells SMC3 is removed from the cores at the end of prophase I and becomes more diffuse throughout the DAPI stained region of the nucleus. These data implicate NEK1 as a possible kinase involved in cohesin redistribution in murine spermatocytes.

13.
Biol Reprod ; 78(3): 462-71, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18057311

RESUMO

The DNA mismatch repair (MMR) family functions in a variety of contexts to preserve genome integrity in most eukaryotes. In particular, members of the MMR family are involved in the process of meiotic recombination in germ cells. MMR gene mutations in mice result in meiotic disruption during prophase I, but the extent of this disruption often differs between male and female meiocytes. To address the role of MMR proteins specifically in female meiosis, we explored the progression of oocytes through prophase I and the meiotic divisions in mice harboring deletions in members of the MMR pathway (Mlh1, Mlh3, Exo1, and an ATPase-deficient variant of Mlh1, Mlh1(G67R)). The colocalization of MLH1 and MLH3, key proteins involved in stabilization of nascent crossovers, was dependent on intact heterodimer formation and was highly correlated with the ability of oocytes to progress through to metaphase II. The exception was Exo1(-/-) oocytes, in which normal MLH1/MLH3 localization was observed followed by failure to proceed to metaphase II. All mutant oocytes were able to resume meiosis after dictyate arrest, but they showed a dramatic decline in chiasmata (to less than 25% of normal), accompanied by varied progression through metaphase I. Taken together, these results demonstrate that MMR function is required for the formation and stabilization of crossovers in mammalian oocytes and that, in the absence of a functional MMR system, the failure to maintain chiasmata results in a reduced ability to proceed normally through the first and second meiotic divisions, despite near-normal levels of meiotic resumption after dictyate arrest.


Assuntos
Reparo de Erro de Pareamento de DNA , Mutação em Linhagem Germinativa , Meiose/genética , Meiose/fisiologia , Prenhez , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Exodesoxirribonucleases/genética , Feminino , Frequência do Gene , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína 1 Homóloga a MutL , Proteínas MutL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , Gravidez , Transdução de Sinais/genética
14.
Science ; 318(5856): 1637-40, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18006705

RESUMO

Cells respond to DNA double-strand breaks by recruiting factors such as the DNA-damage mediator protein MDC1, the p53-binding protein 1 (53BP1), and the breast cancer susceptibility protein BRCA1 to sites of damaged DNA. Here, we reveal that the ubiquitin ligase RNF8 mediates ubiquitin conjugation and 53BP1 and BRCA1 focal accumulation at sites of DNA lesions. Moreover, we establish that MDC1 recruits RNF8 through phosphodependent interactions between the RNF8 forkhead-associated domain and motifs in MDC1 that are phosphorylated by the DNA-damage activated protein kinase ataxia telangiectasia mutated (ATM). We also show that depletion of the E2 enzyme UBC13 impairs 53BP1 recruitment to sites of damage, which suggests that it cooperates with RNF8. Finally, we reveal that RNF8 promotes the G2/M DNA damage checkpoint and resistance to ionizing radiation. These results demonstrate how the DNA-damage response is orchestrated by ATM-dependent phosphorylation of MDC1 and RNF8-mediated ubiquitination.


Assuntos
Estruturas do Núcleo Celular/genética , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Reparo do DNA , Proteínas de Ligação a DNA/química , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , RNA Interferente Pequeno , Transativadores/química , Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
15.
Chromosoma ; 114(2): 92-102, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15983832

RESUMO

Genetic modifications causing germ cell death during meiotic prophase in the mouse frequently have sexually dimorphic phenotypes where oocytes reach more advanced stages than spermatocytes. To determine to what extent these dimorphisms are due to differences in male versus female meiotic prophase development, we compared meiotic chromosome events in the two sexes in both wild-type and mutant mice. We report the abundance and time course of appearance of structural and recombination-related proteins of fetal oocyte nuclei. Oocytes at successive days post coitus show rapid, synchronous meiotic prophase development compared with the continuous spermatocyte development in adult testis. Consequently, a genetic defect requiring 2-3 days from the onset of prophase to reach arrest registers pachytene as the developmental endpoint in oocytes. Pachytene spermatocytes, on the other hand, which normally accumulate during days 4-10 after the onset of prophase, will be rare, giving the appearance of an earlier endpoint than in oocytes. We conclude that these different logistics create apparent sexually dimorphic endpoints. For more pronounced sexual dimorphisms, we examined meiotic prophase of mice with genetic modifications of meiotic chromosome core components that cause male but not female sterility. The correlations between male sterility and alterations in the organization of the sex chromosome cores and X-Y chromatin may indicate that impaired signals from the XY domain (XY chromosome cores, chromatin, dense body and sex body) may interfere with the progression of the spermatocyte through prophase. Oocytes, in the absence of the X-Y pair, do not suffer such defects.


Assuntos
Infertilidade Masculina/genética , Espermatócitos/fisiologia , Cromossomo X/genética , Cromossomo Y/genética , Animais , Proteína BRCA1/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Oócitos/fisiologia
16.
J Cell Sci ; 115(Pt 8): 1611-22, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11950880

RESUMO

During mouse meiosis, the early prophase RAD51/DMC1 recombination protein sites, which are associated with the chromosome cores and which serve as markers for ongoing DNA-DNA interactions, are in ten-fold excess of the eventual reciprocal recombinant events. Most, if not all, of these early interactions are eliminated as prophase progresses. The manner in which these sites are eliminated is the focus of this investigation. We report that these sites acquire replication protein A, RPA and the Escherichia coli MUTS homologue, MSH4p, and somewhat later the Bloom helicase, BLM, while simultaneously losing the RAD51/DMC1 component. Eventually the RPA component is also lost and BLM sites remain. At that time, the MUTL homologue, MLH1p, which is essential for reciprocal recombination in the mouse, appears in numbers and locations that correspond to the distribution of reciprocal recombination events. However, the MLH1 foci do not appear to coincide with the remaining BLM sites. The MLH1p is specifically localized to electron-microscope-defined recombination nodules. We consider the possibility that the homology-search RAD51/DMC1 complexes are involved in homologous chromosome synapsis but that most of these early DNA-DNA interactions are later resolved by the anti-recombination RPA/MSH4/BLM-topoisomerase complex, thereby preventing the formation of superfluous reciprocal recombinant events.


Assuntos
Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , DNA/metabolismo , Meiose/fisiologia , Recombinação Genética , Proteínas de Saccharomyces cerevisiae , Proteínas Adaptadoras de Transdução de Sinal , Adenosina Trifosfatases/metabolismo , Animais , Cromossomos/ultraestrutura , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Masculino , Camundongos , Microscopia Imunoeletrônica , Modelos Genéticos , Proteína 1 Homóloga a MutL , Proteínas Nucleares/metabolismo , Rad51 Recombinase , Ratos , RecQ Helicases , Espermatócitos/citologia , Fatores de Tempo
17.
Genes Dev ; 17(5): 603-14, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12629043

RESUMO

Exonuclease 1 (Exo1) is a 5'-3' exonuclease that interacts with MutS and MutL homologs and has been implicated in the excision step of DNA mismatch repair. To investigate the role of Exo1 in mammalian mismatch repair and assess its importance for tumorigenesis and meiosis, we generated an Exo1 mutant mouse line. Analysis of Exo1(-/-) cells for mismatch repair activity in vitro showed that Exo1 is required for the repair of base:base and single-base insertion/deletion mismatches in both 5' and 3' nick-directed repair. The repair defect in Exo1(-/-) cells also caused elevated microsatellite instability at a mononucleotide repeat marker and a significant increase in mutation rate at the Hprt locus. Exo1(-/-) animals displayed reduced survival and increased susceptibility to the development of lymphomas. In addition, Exo1(-/-) male and female mice were sterile because of a meiotic defect. Meiosis in Exo1(-/-) animals proceeded through prophase I; however, the chromosomes exhibited dynamic loss of chiasmata during metaphase I, resulting in meiotic failure and apoptosis. Our results show that mammalian Exo1 functions in mutation avoidance and is essential for male and female meiosis.


Assuntos
Reparo do DNA/fisiologia , Exodesoxirribonucleases/metabolismo , Predisposição Genética para Doença , Infertilidade/genética , Neoplasias/genética , Animais , Pareamento Incorreto de Bases/genética , Blastocisto , Linhagem Celular , Reparo do DNA/genética , Exodesoxirribonucleases/genética , Feminino , Marcação de Genes , Infertilidade/etiologia , Masculino , Meiose/fisiologia , Metáfase/fisiologia , Camundongos/embriologia , Repetições de Microssatélites
18.
Science ; 300(5623): 1291-5, 2003 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12764197

RESUMO

Meiosis is a critical stage of gametogenesis in which alignment and synapsis of chromosomal pairs occur, allowing for the recombination of maternal and paternal genomes. Here we show that FK506 binding protein (Fkbp6) localizes to meiotic chromosome cores and regions of homologous chromosome synapsis. Targeted inactivation of Fkbp6 in mice results in aspermic males and the absence of normal pachytene spermatocytes. Moreover, we identified the deletion of Fkbp6 exon 8 as the causative mutation in spontaneously male sterile as/as mutant rats. Loss of Fkbp6 results in abnormal pairing and misalignments between homologous chromosomes, nonhomologous partner switches, and autosynapsis of X chromosome cores in meiotic spermatocytes. Fertility and meiosis are normal in Fkbp6 mutant females. Thus, Fkbp6 is a component of the synaptonemal complex essential for sex-specific fertility and for the fidelity of homologous chromosome pairing in meiosis.


Assuntos
Pareamento Cromossômico/fisiologia , Fertilidade/fisiologia , Infertilidade Masculina/fisiopatologia , Meiose , Complexo Sinaptonêmico/fisiologia , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/fisiologia , Sequência de Aminoácidos , Animais , Apoptose , Proteínas de Ciclo Celular , Clonagem Molecular , Proteínas de Ligação a DNA , Éxons , Feminino , Marcação de Genes , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oogênese , Ovário/fisiologia , Prófase , Ratos , Deleção de Sequência , Espermátides/fisiologia , Espermatócitos/fisiologia , Espermatócitos/ultraestrutura , Espermatogênese , Proteínas de Ligação a Tacrolimo/química , Testículo/fisiologia , Cromossomo X/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA