Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther Oncolytics ; 28: 307-320, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36938545

RESUMO

Notch activation complex kinase (NACK) is a component of the Notch transcriptional machinery critical for the Notch-mediated tumorigenesis. However, the mechanism through which NACK regulates Notch-mediated transcription is not well understood. Here, we demonstrate that NACK binds and hydrolyzes ATP and that only ATP-bound NACK can bind to the Notch ternary complex (NTC). Considering this, we sought to identify inhibitors of this ATP-dependent function and, using computational pipelines, discovered the first small-molecule inhibitor of NACK, Z271-0326, that directly blocks the activity of Notch-mediated transcription and shows potent antineoplastic activity in PDX mouse models. In conclusion, we have discovered the first inhibitor that holds promise for the efficacious treatment of Notch-driven cancers by blocking the Notch activity downstream of the NTC.

2.
Sci Transl Med ; 14(635): eabb7695, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35263148

RESUMO

Dysregulation of innate immune signaling pathways is implicated in various hematologic malignancies. However, these pathways have not been systematically examined in acute myeloid leukemia (AML). We report that AML hematopoietic stem and progenitor cells (HSPCs) exhibit a high frequency of dysregulated innate immune-related and inflammatory pathways, referred to as oncogenic immune signaling states. Through gene expression analyses and functional studies in human AML cell lines and patient-derived samples, we found that the ubiquitin-conjugating enzyme UBE2N is required for leukemic cell function in vitro and in vivo by maintaining oncogenic immune signaling states. It is known that the enzyme function of UBE2N can be inhibited by interfering with thioester formation between ubiquitin and the active site. We performed in silico structure-based and cellular-based screens and identified two related small-molecule inhibitors UC-764864/65 that targeted UBE2N at its active site. Using these small-molecule inhibitors as chemical probes, we further revealed the therapeutic efficacy of interfering with UBE2N function. This resulted in the blocking of ubiquitination of innate immune- and inflammatory-related substrates in human AML cell lines. Inhibition of UBE2N function disrupted oncogenic immune signaling by promoting cell death of leukemic HSPCs while sparing normal HSPCs in vitro. Moreover, baseline oncogenic immune signaling states in leukemic cells derived from discrete subsets of patients with AML exhibited a selective dependency on UBE2N function in vitro and in vivo. Our study reveals that interfering with UBE2N abrogates leukemic HSPC function and underscores the dependency of AML cells on UBE2N-dependent oncogenic immune signaling states.


Assuntos
Leucemia Mieloide Aguda , Enzimas de Conjugação de Ubiquitina , Proliferação de Células/genética , Humanos , Leucemia Mieloide Aguda/metabolismo , Oncogenes , Transdução de Sinais/genética , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA