Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
PLoS Pathog ; 17(11): e1010052, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34788341

RESUMO

The methyltransferase FliB posttranslationally modifies surface-exposed ɛ-N-lysine residues of flagellin, the protomer of the flagellar filament in Salmonella enterica (S. enterica). Flagellin methylation, reported originally in 1959, was recently shown to enhance host cell adhesion and invasion by increasing the flagellar hydrophobicity. The role of FliB in this process, however, remained enigmatic. In this study, we investigated the properties and mechanisms of FliB from S. enterica in vivo and in vitro. We show that FliB is an S-adenosylmethionine (SAM) dependent methyltransferase, forming a membrane associated oligomer that modifies flagellin in the bacterial cytosol. Using X-band electron paramagnetic resonance (EPR) spectroscopy, zero-field 57Fe Mössbauer spectroscopy, methylation assays and chromatography coupled mass spectrometry (MS) analysis, we further found that FliB contains an oxygen sensitive [4Fe-4S] cluster that is essential for the methyl transfer reaction and might mediate a radical mechanism. Our data indicate that the [4Fe-4S] cluster is coordinated by a cysteine rich motif in FliB that is highly conserved among multiple genera of the Enterobacteriaceae family.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelina/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Salmonella typhi/enzimologia , Proteínas de Bactérias/genética , Flagelina/química , Proteínas Ferro-Enxofre/genética , Lisina/química , Metilação , Metiltransferases/genética
2.
PLoS Pathog ; 16(2): e1008263, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32092125

RESUMO

The Type III Secretion Systems (T3SS) needle complex is a conserved syringe-shaped protein translocation nanomachine with a mass of about 3.5 MDa essential for the survival and virulence of many Gram-negative bacterial pathogens. This system is composed of a membrane-embedded basal body and an extracellular needle that deliver effector proteins into host cells. High-resolution structures of the T3SS from different organisms and infection stages are needed to understand the underlying molecular mechanisms of effector translocation. Here, we present the cryo-electron microscopy structure of the isolated Shigella T3SS needle complex. The inner membrane (IM) region of the basal body adopts 24-fold rotational symmetry and forms a channel system that connects the bacterial periplasm with the export apparatus cage. The secretin oligomer adopts a heterogeneous architecture with 16- and 15-fold cyclic symmetry in the periplasmic N-terminal connector and C-terminal outer membrane ring, respectively. Two out of three IM subunits bind the secretin connector via a ß-sheet augmentation. The cryo-EM map also reveals the helical architecture of the export apparatus core, the inner rod, the needle and their intervening interfaces.


Assuntos
Proteínas de Bactérias/ultraestrutura , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Shigella/ultraestrutura , Sistemas de Secreção Tipo III/ultraestrutura , Proteínas de Bactérias/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Conformação Proteica em Folha beta , Domínios Proteicos , Shigella/genética , Shigella/metabolismo , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
3.
Appl Opt ; 61(8): 2060-2078, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35297898

RESUMO

The determination of fundamental optical parameters is essential for the development of new optical elements such as mirrors, gratings, or photomasks. Especially in the extreme ultraviolet (EUV) and soft x-ray spectral range, the existing databases for the refractive indices of many materials and compositions are insufficient or are a mixture of experimentally measured and calculated values from atomic scattering factors. Since the physical properties of bulk materials and thin films with thicknesses in the nanometer range are not identical, measurements need to be performed on thin layers. In this study we demonstrate how optical constants of various thin film samples on a bulk substrate can be determined from reflection measurements in the EUV photon energy range from 62 eV to 124 eV. Thin films with thickness of 20 nm to 50 nm of pure Mo, Ni, Pt, Ru, Ta, and Te and different compositions of NixAlx, PtTe, PtxMo, RuxTax, Ru3Re, Ru2W, and TaTeN were prepared by DC magnetron sputtering and measured using EUV reflectometry. The determination optical constants of the different materials are discussed and compared to existing tabulated values.

4.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30872316

RESUMO

Cyclic dinucleotides (CDNs) are important second messenger molecules in prokaryotes and eukaryotes. Within host cells, cytosolic CDNs are detected by STING and alert the host by activating innate immunity characterized by type I interferon (IFN) responses. Extracellular bacteria and dying cells can release CDNs, but sensing of extracellular CDNs (eCDNs) by mammalian cells remains elusive. Here, we report that endocytosis facilitates internalization of eCDNs. The DNA sensor cGAS facilitates sensing of endocytosed CDNs, their perinuclear accumulation, and subsequent STING-dependent release of type I IFN Internalized CDNs bind cGAS directly, leading to its dimerization, and the formation of a cGAS/STING complex, which may activate downstream signaling. Thus, eCDNs comprise microbe- and danger-associated molecular patterns that contribute to host-microbe crosstalk during health and disease.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/metabolismo , Animais , Linhagem Celular , Endocitose/genética , Endocitose/imunologia , Espaço Extracelular , Interações Hospedeiro-Patógeno/imunologia , Humanos , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Nucleotídeos Cíclicos/química , Nucleotidiltransferases/química , Nucleotidiltransferases/genética , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Sistemas do Segundo Mensageiro , Transdução de Sinais , Relação Estrutura-Atividade
5.
Mol Microbiol ; 112(5): 1519-1530, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31444817

RESUMO

Bacterial flagellar filaments are assembled by tens of thousands flagellin subunits, forming 11 helically arranged protofilaments. Each protofilament can take either of the two bistable forms L-type or R-type, having slightly different conformations and inter-protofilaments interactions. By mixing different ratios of L-type and R-type protofilaments, flagella adopt multiple filament polymorphs and promote bacterial motility. In this study, we investigated the hydrogen bonding networks at the flagellin crystal packing interface in Salmonella enterica serovar typhimurium (S. typhimurium) by site-directed mutagenesis of each hydrogen bonded residue. We identified three flagellin mutants D108A, N133A and D152A that were non-motile despite their fully assembled flagella. Mutants D108A and D152A trapped their flagellar filament into inflexible right-handed polymorphs, which resemble the previously predicted 3L/8R and 4L/7R helical forms in Calladine's model but have never been reported in vivo. Mutant N133A produces floppy flagella that transform flagellar polymorphs in a disordered manner, preventing the formation of flagellar bundles. Further, we found that the hydrogen bonding interactions around these residues are conserved and coupled to flagellin L/R transition. Therefore, we demonstrate that the hydrogen bonding networks formed around flagellin residues D108, N133 and D152 greatly contribute to flagellar bending, flexibility, polymorphisms and bacterial motility.


Assuntos
Flagelos/metabolismo , Flagelina/química , Salmonella typhimurium/fisiologia , Flagelina/genética , Ligação de Hidrogênio , Locomoção/genética , Locomoção/fisiologia
6.
Nature ; 512(7515): 387-92, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25119038

RESUMO

The aryl hydrocarbon receptor (AhR) is a highly conserved ligand-dependent transcription factor that senses environmental toxins and endogenous ligands, thereby inducing detoxifying enzymes and modulating immune cell differentiation and responses. We hypothesized that AhR evolved to sense not only environmental pollutants but also microbial insults. We characterized bacterial pigmented virulence factors, namely the phenazines from Pseudomonas aeruginosa and the naphthoquinone phthiocol from Mycobacterium tuberculosis, as ligands of AhR. Upon ligand binding, AhR activation leads to virulence factor degradation and regulated cytokine and chemokine production. The relevance of AhR to host defence is underlined by heightened susceptibility of AhR-deficient mice to both P. aeruginosa and M. tuberculosis. Thus, we demonstrate that AhR senses distinct bacterial virulence factors and controls antibacterial responses, supporting a previously unidentified role for AhR as an intracellular pattern recognition receptor, and identify bacterial pigments as a new class of pathogen-associated molecular patterns.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Mycobacterium tuberculosis/imunologia , Pigmentos Biológicos/metabolismo , Pseudomonas aeruginosa/imunologia , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Animais , Antibacterianos/metabolismo , Células da Medula Óssea/citologia , Citocinas/imunologia , Citocinas/metabolismo , Retroalimentação Fisiológica , Humanos , Ligantes , Ativação de Macrófagos , Camundongos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/metabolismo , Fenazinas/metabolismo , Pigmentos Biológicos/química , Infecções por Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Piocianina/metabolismo , Fatores de Virulência/química , Fatores de Virulência/metabolismo
7.
J Synchrotron Radiat ; 26(Pt 2): 535-542, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855265

RESUMO

At the Metrology Light Source, an electron storage ring dedicated to metrological applications, the U125 insertion device beamline utilizes undulator radiation for various applications over a broad spectral range. Using a hybrid normal-incidence and grazing-incidence in-vacuum switchable plane-grating monochromator, a spectral region ranging from the near-infrared to soft X-ray is covered. The beamline is dedicated to surface-analytical methods, e.g. ellipsometry, photoelectron spectroscopy or photoemission tomography. The traceability of radiometric quantities, i.e. quantitative determination of the available radiant power (or photon flux), is required for some of these applications to support the metrological aspect of the measurements. In particular, attention is paid to the suppression of unwanted spectral contributions from higher diffraction orders, and to the monitoring of the radiation intensity during the measurements. With the results from the beamline commissioning, an uncertainty budget for all relevant radiometric quantities was established.

8.
Cell Microbiol ; 19(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28295924

RESUMO

The flagellum is a sophisticated nanomachine and an important virulence factor of many pathogenic bacteria. Flagellar motility enables directed movements towards host cells in a chemotactic process, and near-surface swimming on cell surfaces is crucial for selection of permissive entry sites. The long external flagellar filament is made of tens of thousands subunits of a single protein, flagellin, and many Salmonella serovars alternate expression of antigenically distinct flagellin proteins, FliC and FljB. However, the role of the different flagellin variants during gut colonisation and host cell invasion remains elusive. Here, we demonstrate that flagella made of different flagellin variants display structural differences and affect Salmonella's swimming behaviour on host cell surfaces. We observed a distinct advantage of bacteria expressing FliC-flagella to identify target sites on host cell surfaces and to invade epithelial cells. FliC-expressing bacteria outcompeted FljB-expressing bacteria for intestinal tissue colonisation in the gastroenteritis and typhoid murine infection models. Intracellular survival and responses of the host immune system were not altered. We conclude that structural properties of flagella modulate the swimming behaviour on host cell surfaces, which facilitates the search for invasion sites and might constitute a general mechanism for productive host cell invasion of flagellated bacteria.


Assuntos
Células Epiteliais/microbiologia , Flagelina/metabolismo , Trato Gastrointestinal/microbiologia , Salmonella/fisiologia , Animais , Locomoção , Camundongos , Salmonelose Animal/microbiologia
9.
Nature ; 486(7402): 276-9, 2012 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-22699623

RESUMO

Pathogenic bacteria using a type III secretion system (T3SS) to manipulate host cells cause many different infections including Shigella dysentery, typhoid fever, enterohaemorrhagic colitis and bubonic plague. An essential part of the T3SS is a hollow needle-like protein filament through which effector proteins are injected into eukaryotic host cells. Currently, the three-dimensional structure of the needle is unknown because it is not amenable to X-ray crystallography and solution NMR, as a result of its inherent non-crystallinity and insolubility. Cryo-electron microscopy combined with crystal or solution NMR subunit structures has recently provided a powerful hybrid approach for studying supramolecular assemblies, resulting in low-resolution and medium-resolution models. However, such approaches cannot deliver atomic details, especially of the crucial subunit-subunit interfaces, because of the limited cryo-electron microscopic resolution obtained in these studies. Here we report an alternative approach combining recombinant wild-type needle production, solid-state NMR, electron microscopy and Rosetta modelling to reveal the supramolecular interfaces and ultimately the complete atomic structure of the Salmonella typhimurium T3SS needle. We show that the 80-residue subunits form a right-handed helical assembly with roughly 11 subunits per two turns, similar to that of the flagellar filament of S. typhimurium. In contrast to established models of the needle in which the amino terminus of the protein subunit was assumed to be α-helical and positioned inside the needle, our model reveals an extended amino-terminal domain that is positioned on the surface of the needle, while the highly conserved carboxy terminus points towards the lumen.


Assuntos
Sistemas de Secreção Bacterianos , Modelos Moleculares , Salmonella typhimurium/química , Células HeLa , Humanos , Microscopia Eletrônica , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
11.
PLoS Pathog ; 10(1): e1003881, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24453973

RESUMO

The Type III Secretion System (T3SS) is a macromolecular complex used by Gram-negative bacteria to secrete effector proteins from the cytoplasm across the bacterial envelope in a single step. For many pathogens, the T3SS is an essential virulence factor that enables the bacteria to interact with and manipulate their respective host. A characteristic structural feature of the T3SS is the needle complex (NC). The NC resembles a syringe with a basal body spanning both bacterial membranes and a long needle-like structure that protrudes from the bacterium. Based on the paradigm of a syringe-like mechanism, it is generally assumed that effectors and translocators are unfolded and secreted from the bacterial cytoplasm through the basal body and needle channel. Despite extensive research on T3SS, this hypothesis lacks experimental evidence and the mechanism of secretion is not fully understood. In order to elucidate details of the T3SS secretion mechanism, we generated fusion proteins consisting of a T3SS substrate and a bulky protein containing a knotted motif. Because the knot cannot be unfolded, these fusions are accepted as T3SS substrates but remain inside the NC channel and obstruct the T3SS. To our knowledge, this is the first time substrate fusions have been visualized together with isolated NCs and we demonstrate that substrate proteins are secreted directly through the channel with their N-terminus first. The channel physically encloses the fusion protein and shields it from a protease and chemical modifications. Our results corroborate an elementary understanding of how the T3SS works and provide a powerful tool for in situ-structural investigations in the future. This approach might also be applicable to other protein secretion systems that require unfolding of their substrates prior to secretion.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/fisiologia , Citoplasma/metabolismo , Shigella flexneri/metabolismo , Proteínas de Bactérias/genética , Citoplasma/genética , Transporte Proteico/fisiologia , Shigella flexneri/genética , Shigella flexneri/ultraestrutura
12.
Nanotechnology ; 27(32): 324005, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27363480

RESUMO

Monochromatic radiation with known absolute radiant power from an undulator at the electron storage ring Metrology Light Source (MLS) was used to irradiate PTB7 (a thieno[3, 4-b]thiophene-alt-benzodithiophene polymer) thin films at wavelengths (photon energies) of 185 nm (6.70 eV), 220 nm (5.64 eV), 300 nm (4.13 eV), 320 nm (3.88 eV), 356 nm (3.48 eV) and 675 nm (1.84 eV) under ultra-high vacuum conditions for the investigation of radiation-induced degradation effects. The characterization of the thin films is focused at ultraviolet photoelectron spectroscopy (UPS) of valence bands and is complemented by S 2p x-ray photoelectron spectroscopy (S 2p XPS) before and after the irradiation procedure. The radiant exposure was determined for each irradiation by means of photodiodes traceably calibrated to the international system of units SI. The valence band spectra show the strongest changes for the shortest wavelengths and no degradation effect at 356 nm and 675 nm even with the highest radiant exposure applied. In the spectral range where the Sun appears bright on the Earth's surface, no degradation effects are observed.

13.
PLoS Pathog ; 9(3): e1003245, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555258

RESUMO

The Type Three Secretion System (T3SS), or injectisome, is a macromolecular infection machinery present in many pathogenic Gram-negative bacteria. It consists of a basal body, anchored in both bacterial membranes, and a hollow needle through which effector proteins are delivered into the target host cell. Two different architectures of the T3SS needle have been previously proposed. First, an atomic model of the Salmonella typhimurium needle was generated from solid-state NMR data. The needle subunit protein, PrgI, comprises a rigid-extended N-terminal segment and a helix-loop-helix motif with the N-terminus located on the outside face of the needle. Second, a model of the Shigella flexneri needle was generated from a high-resolution 7.7-Å cryo-electron microscopy density map. The subunit protein, MxiH, contains an N-terminal α-helix, a loop, another α-helix, a 14-residue-long ß-hairpin (Q51-Q64) and a C-terminal α-helix, with the N-terminus facing inward to the lumen of the needle. In the current study, we carried out solid-state NMR measurements of wild-type Shigella flexneri needles polymerized in vitro and identified the following secondary structure elements for MxiH: a rigid-extended N-terminal segment (S2-T11), an α-helix (L12-A38), a loop (E39-P44) and a C-terminal α-helix (Q45-R83). Using immunogold labeling in vitro and in vivo on functional needles, we located the N-terminus of MxiH subunits on the exterior of the assembly, consistent with evolutionary sequence conservation patterns and mutagenesis data. We generated a homology model of Shigella flexneri needles compatible with both experimental data: the MxiH solid-state NMR chemical shifts and the state-of-the-art cryoEM density map. These results corroborate the solid-state NMR structure previously solved for Salmonella typhimurium PrgI needles and establish that Shigella flexneri and Salmonella typhimurium subunit proteins adopt a conserved structure and orientation in their assembled state. Our study reveals a common structural architecture of T3SS needles, essential to understand T3SS-mediated infection and develop treatments.


Assuntos
Proteínas de Bactérias/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Salmonella typhimurium/química , Shigella flexneri/química , Sequência de Aminoácidos , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Salmonella typhimurium/ultraestrutura , Alinhamento de Sequência , Shigella flexneri/ultraestrutura
14.
Phys Rev Lett ; 113(16): 163001, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25361254

RESUMO

An experimental method for the verification of the individually different energy dependencies of L(1)-, L(2)-, and L(3)- subshell photoionization cross sections is described. The results obtained for Pd and Mo are well in line with theory regarding both energy dependency and absolute values, and confirm the theoretically calculated cross sections by Scofield from the early 1970 s and, partially, more recent data by Trzhaskovskaya, Nefedov, and Yarzhemsky. The data also demonstrate the questionability of quantitative x-ray spectroscopical results based on the widely used fixed jump ratio approximated cross sections with energy independent ratios. The experiments are carried out by employing the radiometrically calibrated instrumentation of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II in Berlin; the obtained fluorescent intensities are thereby calibrated at an absolute level in reference to the International System of Units. Experimentally determined fixed fluorescence line ratios for each subshell are used for a reliable deconvolution of overlapping fluorescence lines. The relevant fundamental parameters of Mo and Pd are also determined experimentally in order to calculate the subshell photoionization cross sections independently of any database.

15.
Cell Microbiol ; 15(11): 1809-17, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23927570

RESUMO

Many Gram-negative pathogens utilize type 3 secretion systems (T3SSs) for a successful infection. The T3SS is a large macromolecular complex which spans both bacterial membranes and delivers effector proteins into the host cell. The infection requires spatiotemporal control of diverse sets of secreted effectors and various mechanisms have evolved to regulate T3SS in response to external stimuli. This review will describe mechanisms that may control type 3 secretion, revealing a multi-step regulatory strategy. We then propose an updated model of T3SS that illustrates different stages of secretion and integrates the most recent structural and functional data.


Assuntos
Sistemas de Secreção Bacterianos , Regulação Bacteriana da Expressão Gênica , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Proteínas de Bactérias/metabolismo , Substâncias Macromoleculares/metabolismo , Fatores de Virulência/metabolismo
16.
PLoS Pathog ; 7(8): e1002163, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21829362

RESUMO

Many infectious gram-negative bacteria, including Salmonella typhimurium, require a Type Three Secretion System (T3SS) to translocate virulence factors into host cells. The T3SS consists of a membrane protein complex and an extracellular needle together that form a continuous channel. Regulated secretion of virulence factors requires the presence of SipD at the T3SS needle tip in S. typhimurium. Here we report three-dimensional structures of individual SipD, SipD in fusion with the needle subunit PrgI, and of SipD:PrgI in complex with the bile salt, deoxycholate. Assembly of the complex involves major conformational changes in both SipD and PrgI. This rearrangement is mediated via a π bulge in the central SipD helix and is stabilized by conserved amino acids that may allow for specificity in the assembly and composition of the tip proteins. Five copies each of the needle subunit PrgI and SipD form the T3SS needle tip complex. Using surface plasmon resonance spectroscopy and crystal structure analysis we found that the T3SS needle tip complex binds deoxycholate with micromolar affinity via a cleft formed at the SipD:PrgI interface. In the structure-based three-dimensional model of the T3SS needle tip, the bound deoxycholate faces the host membrane. Recently, binding of SipD with bile salts present in the gut was shown to impede bacterial infection. Binding of bile salts to the SipD:PrgI interface in this particular arrangement may thus inhibit the T3SS function. The structures presented in this study provide insight into the open state of the T3SS needle tip. Our findings present the atomic details of the T3SS arrangement occurring at the pathogen-host interface.


Assuntos
Antígenos de Bactérias/química , Proteínas de Bactérias/química , Sistemas de Secreção Bacterianos/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Proteínas de Membrana/química , Subunidades Proteicas/química , Salmonella typhimurium/fisiologia , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Ácido Desoxicólico/química , Proteínas de Membrana/metabolismo , Membranas/química , Membranas/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão , Ressonância de Plasmônio de Superfície
17.
FASEB J ; 26(4): 1717-26, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22247334

RESUMO

Gram-negative bacteria use the type 3 secretion system (T3SS) to colonize host cells. T3SSs are ring-shaped macromolecular complexes specific for the transport of effector molecules into host cells. It was recently suggested that a cytosolic ring-shaped protein complex delivers effector molecules to the T3SS. However, how transport of effector proteins is regulated is not known. Here, we report the high-resolution X-ray crystal structure of the whole cytosolic domain of MxiG (MxiG(1-126)), a major component of the inner T3SS rings in Shigella flexneri. MxiG(1-126) folds as an FHA domain, which specifically binds phosphorylated threonines. Indeed, MxiG(1-126) binds to Spa33, a cytoplasmic-ring component of Shigella, as revealed in pulldown studies. Surface plasmon resonance analysis showed specific interaction of MxiG with a Spa33 peptide only if phosphorylated. In total, 24 copies of the MxiG(1-126) crystal structure were fitted into the cryo-EM map of the Shigella T3SS. The phosphoprotein binding site of each MxiG molecule faces the channel of the T3SS, allowing interaction with cytosolic binding partners. Secretion assays and host cell invasion studies of complemented Shigella knockout cells indicated that the phosphoprotein binding of MxiG is essential for bacterial virulence. Our findings suggest that MxiG is involved in T3SS regulation.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Citosol/metabolismo , Via Secretória/fisiologia , Shigella flexneri/patogenicidade , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Cristalografia por Raios X , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Alinhamento de Sequência , Shigella flexneri/genética , Shigella flexneri/metabolismo
18.
ACS Omega ; 8(35): 31698-31713, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692250

RESUMO

Nipah virus (NiV) is a zoonotic virus that causes lethal encephalitis and respiratory disease with the symptom of endothelial cell-cell fusion. Several NiV outbreaks have been reported since 1999 with nearly annual occurrences in Bangladesh. The outbreaks had high mortality rates ranging from 40 to 90%. No specific vaccine has yet been reported against NiV. Recently, several vaccine candidates and different designs of vaccines composed of epitopes against NiV were proposed. Most of the vaccines target single protein or protein complex subunits of the pathogen. The multiepitope vaccines proposed also cover a largely limited number of epitopes, and hence, their efficiency is still uncertain. To address the urgent need for a specific and effective vaccine against NiV infection, in the present study, we have utilized the "reverse epitomics" approach ("overlapping-epitope-clusters-to-patches" method) to identify "antigenic patches" (Ag-Patches) and utilize them as immunogenic composition for multipatch vaccine (MPV) design. The designed MPVs were analyzed for immunologically crucial parameters, physiochemical properties, and interaction with Toll-like receptor 3 ectodomain. In total, 30 CTL (cytotoxic T lymphocyte) and 27 HTL (helper T lymphocyte) antigenic patches were identified from the entire NiV proteome based on the clusters of overlapping epitopes. These identified Ag-Patches cover a total of discrete 362 CTL and 414 HTL epitopes from the entire proteome of NiV. The antigenic patches were utilized as immunogenic composition for the design of two CTL and two HTL multipatch vaccines. The 57 antigenic patches utilized here cover 776 overlapping epitopes targeting 52 different HLA class I and II alleles, providing a global ethnically distributed human population coverage of 99.71%. Such large number of epitope coverage resulting in large human population coverage cannot be reached with single-protein/subunit or multiepitope based vaccines. The reported antigenic patches also provide potential immunogenic composition for early detection diagnostic kits for NiV infection. Further, all the MPVs and Toll-like receptor ectodomain complexes show a stable nature of molecular interaction with numerous hydrogen bonds, salt bridges, and nonbounded contact formation and acceptable root mean square deviation and fluctuation. The cDNA analysis shows a favorable large-scale expression of the MPV constructs in a human cell line. By utilizing the novel "reverse epitomics" approach, highly immunogenic novel "GaEl antigenic patches" (GaEl Ag-Patches), a synonym term for "antigenic patches", were identified and utilized as immunogenic composition to design four MPVs against NiV. We conclude that the novel multipatch vaccines are potential candidates to combat NiV, with greater effectiveness, high specificity, and large human population coverage worldwide.

19.
PLoS One ; 18(3): e0282580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36920996

RESUMO

Nipah virus (NiV) is an emerging zoonotic virus that caused several serious outbreaks in the south asian region with high mortality rates ranging from 40 to 90% since 2001. NiV infection causes lethal encephalitis and respiratory disease with the symptom of endothelial cell-cell fusion. No specific and effective vaccine has yet been reported against NiV. To address the urgent need for a specific and effective vaccine against NiV infection, in the present study, we have designed two Multi-Epitope Vaccines (MEVs) composed of 33 Cytotoxic T lymphocyte (CTL) epitopes and 38 Helper T lymphocyte (HTL) epitopes. Out of those CTL and HTL combined 71 epitopes, 61 novel epitopes targeting nine different NiV proteins were not used before for vaccine design. Codon optimization for the cDNA of both the designed MEVs might ensure high expression potential in the human cell line as stable proteins. Both MEVs carry potential B cell linear epitope overlapping regions, B cell discontinuous epitopes as well as IFN-γ inducing epitopes. Additional criteria such as sequence consensus amongst CTL, HTL and B Cell epitopes was implemented for the design of final constructs constituting MEVs. Hence, the designed MEVs carry the potential to elicit cell-mediated as well as humoral immune response. Selected overlapping CTL and HTL epitopes were validated for their stable molecular interactions with HLA class I and II alleles and in case of CTL epitopes with human Transporter Associated with antigen Processing (TAP) cavity. The structure based epitope cross validation for interaction with TAP cavity was used as another criteria choosing final epitopes for NiV MEVs. Finally, human Beta-defensin 2 and Beta-defensin 3 were used as adjuvants to enhance the immune response of both the MEVs. Molecular dynamics simulation studies of MEVs-TLR3 ectodomain (Human Toll-Like Receptor 3) complex indicated the stable molecular interaction. We conclude that the MEVs designed and in silico validated here could be highly potential vaccine candidates to combat NiV infections, with great effectiveness, high specificity and large human population coverage worldwide.


Assuntos
Infecções por Henipavirus , Vacinas Virais , beta-Defensinas , Humanos , Biologia Computacional , Epitopos de Linfócito B , Epitopos de Linfócito T , Simulação de Acoplamento Molecular , Receptor 3 Toll-Like , Vacinas de Subunidades Antigênicas , Antígenos HLA/imunologia
20.
Protein Sci ; 32(4): e4595, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36790757

RESUMO

The type III secretion system (T3SS) is a large, transmembrane protein machinery used by various pathogenic gram-negative bacteria to transport virulence factors into the host cell during infection. Understanding the structure of T3SSs is crucial for future developments of therapeutics that could target this system. However, much of the knowledge about the structure of T3SS is available only for Salmonella, and it is unclear how this large assembly is conserved across species. Here, we combined cryo-electron microscopy, cross-linking mass spectrometry, and integrative modeling to determine the structure of the T3SS needle complex from Shigella flexneri. We show that the Shigella T3SS exhibits unique features distinguishing it from other structurally characterized T3SSs. The secretin pore complex adopts a new fold of its C-terminal S domain and the pilotin MxiM[SctG] locates around the outer surface of the pore. The export apparatus structure exhibits a conserved pseudohelical arrangement but includes the N-terminal domain of the SpaS[SctU] subunit, which was not present in any of the previously published virulence-related T3SS structures. Similar to other T3SSs, however, the apparatus is anchored within the needle complex by a network of flexible linkers that either adjust conformation to connect to equivalent patches on the secretin oligomer or bind distinct surface patches at the same height of the export apparatus. The conserved and unique features delineated by our analysis highlight the necessity to analyze T3SS in a species-specific manner, in order to fully understand the underlying molecular mechanisms of these systems. The structure of the type III secretion system from Shigella flexneri delineates conserved and unique features, which could be used for the development of broad-range therapeutics.


Assuntos
Shigella flexneri , Sistemas de Secreção Tipo III , Sistemas de Secreção Tipo III/metabolismo , Shigella flexneri/química , Shigella flexneri/metabolismo , Proteínas de Bactérias/química , Secretina/metabolismo , Microscopia Crioeletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA