Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Arch Pharm (Weinheim) ; 349(2): 91-103, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26725082

RESUMO

The inhibition of cellular factors that are involved in viral replication may be an important alternative to the commonly used strategy of targeting viral enzymes. The guanylhydrazone CNI-1493, a potent inhibitor of the deoxyhypusine synthase (DHS), prevents the activation of the cellular factor eIF-5A and thereby suppresses HIV replication and a number of other diseases. Here, we report on the design, synthesis and biological evaluation of a series of CNI-1493 analogues. The sebacoyl linker in CNI-1493 was replaced by different alkyl or aryl dicarboxylic acids. Most of the tested derivatives suppress HIV-1 replication efficiently in a dose-dependent manner without showing toxic side effects. The unexpected antiviral activity of the rigid derivatives point to a second binding mode as previously assumed for CNI-1493. Moreover, the chemical stability of CNI-1493 was analysed, showing a successive hydrolysis of the imino bonds. By molecular dynamics simulations, the behaviour of the parent CNI-1493 in solution and its interactions with DHS were investigated.


Assuntos
Fármacos Anti-HIV/química , HIV-1/efeitos dos fármacos , Hidrazonas/química , Oxigenases de Função Mista/antagonistas & inibidores , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacologia , Linhagem Celular , Estabilidade de Medicamentos , HIV-1/fisiologia , Humanos , Hidrazonas/síntese química , Hidrazonas/farmacologia , Hidrólise , Oxigenases de Função Mista/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , Replicação Viral
2.
J Chem Inf Model ; 54(3): 756-66, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24533790

RESUMO

The consistent handling of molecules is probably the most basic and important requirement in the field of cheminformatics. Reliable results can only be obtained if the underlying calculations are independent of the specific way molecules are represented in the input data. However, ensuring consistency is a complex task with many pitfalls, an important one being the fact that the same molecule can be represented by different valence bond structures. In order to achieve reliability, a cheminformatics system needs to solve two fundamental problems. First, different choices of valence bond structures must be identified as the same molecule. Second, for each molecule all valence bond structures relevant to the context must be taken into consideration. The latter is especially important with regard to tautomers and protonation states, as these have considerable influence on physicochemical properties of molecules. We present a comprehensive method for the rapid and consistent generation of reasonable tautomers and protonation states for molecules relevant in the context of drug design. This method is based on a generic scheme, the Valence State Combination Model, which has been designed for the enumeration and scoring of valence bond structures in large data sets. In order to ensure our method's consistency, we have developed procedures which can serve as a general validation scheme for similar approaches. The analysis of both the average number of generated structures and the associated runtimes shows that our method is perfectly suited for typical cheminformatics applications. By comparison with frequently used and curated public data sets, we can demonstrate that the tautomers and protonation state produced by our method are chemically reasonable.


Assuntos
Preparações Farmacêuticas/química , Prótons , Bases de Dados de Produtos Farmacêuticos , Desenho de Fármacos , Modelos Químicos , Estereoisomerismo
3.
J Chem Inf Model ; 53(1): 76-87, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23176552

RESUMO

The analysis of small molecule crystal structures is a common way to gather valuable information for drug development. The necessary structural data is usually provided in specific file formats containing only element identities and three-dimensional atomic coordinates as reliable chemical information. Consequently, the automated perception of molecular structures from atomic coordinates has become a standard task in cheminformatics. The molecules generated by such methods must be both chemically valid and reasonable to provide a reliable basis for subsequent calculations. This can be a difficult task since the provided coordinates may deviate from ideal molecular geometries due to experimental uncertainties or low resolution. Additionally, the quality of the input data often differs significantly thus making it difficult to distinguish between actual structural features and mere geometric distortions. We present a method for the generation of molecular structures from atomic coordinates based on the recently published NAOMI model. By making use of this consistent chemical description, our method is able to generate reliable results even with input data of low quality. Molecules from 363 Protein Data Bank (PDB) entries could be perceived with a success rate of 98%, a result which could not be achieved with previously described methods. The robustness of our approach has been assessed by processing all small molecules from the PDB and comparing them to reference structures. The complete data set can be processed in less than 3 min, thus showing that our approach is suitable for large scale applications.


Assuntos
Mineração de Dados/métodos , Bases de Dados de Proteínas , Informática/métodos , Ligantes , Reprodutibilidade dos Testes
4.
Invest New Drugs ; 30(6): 2274-83, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22415796

RESUMO

Effective inhibition of BCR-ABL tyrosine kinase activity with Imatinib represents a breakthrough in the treatment of patients with chronic myeloid leukemia (CML). However, more than 30 % of patients with CML in chronic phase do not respond adequately to Imatinib and the drug seems not to affect the quiescent pool of BCR-ABL positive leukemic stem and progenitor cells. Therefore, despite encouraging clinical results, Imatinib can still not be considered a curative treatment option in CML. We recently reported downregulation of eukaryotic initiation factor 5A (eIF5A) in Imatinib treated K562 cells. Furthermore, the inhibition of eIF5A by siRNA in combination with Imatinib has been shown to exert synergistic cytotoxic effects on BCR-ABL positive cell lines. Based on the structure of known deoxyhypusine synthase (DHS) inhibitors such as CNI-1493, a drug design approach was applied to develop potential compounds targeting DHS. Here we report the biological evaluation of selected novel (DHSI-15) as compared to established (CNI-1493, deoxyspergualin) DHS inhibitors. We show that upon the compounds tested, DHSI-15 and deoxyspergualin exert strongest antiproliferative effects on BCR-ABL cells including Imatinib resistant mutants. However, this effect did not seem to be restricted to BCR-ABL positive cell lines or primary cells. Both compounds are able to induce apoptosis/necrosis during long term incubation of BCR-ABL positive BA/F3 derivates. Pharmacological synergism can be observed for deoxyspergualin and Imatinib, but not for DHSI-15 and Imatinib. Finally we show that deoxyspergualin is able to inhibit proliferation of CD34+ progenitor cells from CML patients. We conclude that inhibition of deoxyhypusine synthase (DHS) can be supportive for the anti-proliferative treatment of leukemia and merits further investigation including other cancers.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Animais , Antígenos CD34 , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Guanidinas/farmacologia , Humanos , Hidrazonas/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Camundongos
5.
J Chem Inf Model ; 52(8): 2013-21, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22780427

RESUMO

The perception of a set of rings forms the basis for a number of chemoinformatics applications, e.g. the systematic naming of compounds, the calculation of molecular descriptors, the matching of SMARTS expressions, and the generation of atomic coordinates. We introduce the concept of unique ring families (URFs) as an extension of the concept of relevant cycles (RCs). URFs are consistent for different atom orders and represent an intuitive description of the rings of a molecular graph. Furthermore, in contrast to RCs, URFs are polynomial in number. We provide an algorithm to efficiently calculate URFs in polynomial time and demonstrate their suitability for real-time applications by providing computing time benchmarks for the PubChem Database. URFs combine three important properties of chemical ring descriptions, for the first time, namely being unique, chemically meaningful, and efficient to compute. Therefore, URFs are a valuable alternative to the commonly used concept of the smallest set of smallest rings (SSSR) and would be suited to become the standard measure for ring topologies of small molecules.


Assuntos
Desenho de Fármacos , Informática/métodos , Bases de Dados de Produtos Farmacêuticos
6.
J Chem Inf Model ; 51(12): 3199-207, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22067015

RESUMO

In most cheminformatics workflows, chemical information is stored in files which provide the necessary data for subsequent calculations. The correct interpretation of the file formats is an important prerequisite to obtain meaningful results. Consistent reading of molecules from files, however, is not an easy task. Each file format implicitly represents an underlying chemical model, which has to be taken into consideration when the input data is processed. Additionally, many data sources contain invalid molecules. These have to be identified and either corrected or discarded. We present the chemical file format converter NAOMI, which provides efficient procedures for reliable handling of molecules from the common chemical file formats SDF, MOL2, and SMILES. These procedures are based on a consistent chemical model which has been designed for the appropriate representation of molecules relevant in the context of drug discovery. NAOMI's functionality is tested by round robin file IO exercises with public data sets, which we believe should become a standard test for every cheminformatics tool.


Assuntos
Descoberta de Drogas/métodos , Software , Bases de Dados Factuais , Informática/métodos , Modelos Químicos , Estrutura Molecular
7.
Biochemistry ; 49(13): 2768-77, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20199110

RESUMO

The membrane protein Rv0899 (OmpATb) from Mycobacterium tuberculosis, has been proposed to act as an outer membrane porin and to contribute to the bacterium's adaptation to the acidic environment of the phagosome during infection. The gene is restricted to pathogenic mycobacteria and, thus, is an attractive candidate for the development of anti-tuberculosis chemotherapy. The 326-residue protein contains three domains: an N-terminal domain (residues 1-72) that includes a sequence of 20 hydrophobic amino acids required for membrane translocation, a central B domain (residues 73-200) with homology to the conserved putative lipid-binding BON (bacterial OsmY and nodulation) superfamily, and a C domain (residues 201-326) with homology to the OmpA-C-like superfamily of periplasmic peptidoglycan-binding sequences, found in several types of bacterial membrane proteins, including in the C-terminus of the Escherichia coli outer membrane protein OmpA. We have characterized the structure and dynamics of the B and C domains and have determined the three-dimensional structure of the B domain. Rv0899 does not form a transmembrane beta-barrel. Residues 73-326 form a mixed alpha/beta-globular structure, encompassing two independently folded modules corresponding to the B and C domains connected by a flexible linker. The B domain folds with three parallel/antiparallel alpha-helices packed against six parallel/antiparallel beta-strands that form a flat beta-sheet. The core is hydrophobic, while the exterior is polar and predominantly acidic. The structure of a BON homology domain is revealed here for the first time. In light of this unexpected structure, it is hard to reconcile an outer membrane porin activity with the central domain of the protein. The structure of the B domain and the overall architecture of the protein suggest alternative modes of membrane association.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Mycobacterium tuberculosis/química , Proteínas de Bactérias/química , Membrana Celular/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína
8.
Medchemcomm ; 8(6): 1220-1224, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30108832

RESUMO

A highly miniaturized biochemical assay was set up to test a focused set of natural products against the enzymatic activity of protein tyrosine phosphatase 1B (PTP1B). The screen resulted in the identification of the natural product alkaloids, berberine and palmatine as well as α-tocopheryl succinate (α-TOS) as potential inhibitors of PTP1B. In a second step, several read-out and counter assays were applied to confirm the observed inhibitory activity of the identified hits and to remove false positives which target the enzymatic activity of PTP1B by a non-specific mechanism, also known as PAINS (pan-assay interference compounds). Both, berberine and palmatine were identified as false positives which interfered with the assay read-out. Using NMR spectroscopy, self-association via stacking interactions was detected for berberine in aqueous media, which may also contribute to the non-specific inhibition of PTP1B. α-TOS was confirmed as a novel reversible and competitive inhibitor of PTP1B. A concise structure-activity relationship study identified the carboxyl group and the saturated phytyl-side chain as being critical for PTP1B inhibition.

9.
ChemMedChem ; 9(5): 940-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24616161

RESUMO

The human enzyme deoxyhypusine synthase (DHS) is an important host cell factor that participates in the post-translational hypusine modification of eukaryotic initiation factor 5A (eIF-5A). Hypusine-modified eIF-5A plays a role in a number of diseases, including HIV infection/AIDS. Thus, DHS represents a novel and attractive drug target. So far, four crystal structures are available, and various substances have been tested for inhibition of human DHS. Among these inhibitors, N-1-guanyl-1,7-diaminoheptane (GC7) has been co-crystallized in the active site of DHS. However, despite its potency, GC7 is not selective enough to be used in drug applications. Therefore, new compounds that target DHS are needed. Herein we report the in silico design, chemical synthesis, and biological evaluation of new DHS inhibitors. One of these inhibitors showed dose-dependent inhibition of DHS in vitro, as well as suppression of HIV replication in cell cultures. Furthermore, the compound exhibited no cytotoxic effects at active concentrations. Thus, this designed compound demonstrated proof of principle and represents a promising starting point for the development of new drug candidates to specifically interfere with DHS activity.


Assuntos
Simulação por Computador , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , HIV-1/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , HIV-1/crescimento & desenvolvimento , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA