Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
FASEB J ; 38(3): e23460, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38315443

RESUMO

Traumatic brain injury (TBI) is one of the leading causes of death worldwide. There are currently no effective treatments for TBI, and trauma survivors suffer from a variety of long-lasting health consequences. With nutritional support recently emerging as a vital step in improving TBI patients' outcomes, we sought to evaluate the potential therapeutic benefits of nutritional supplements derived from bovine thymus gland, which can deliver a variety of nutrients and bioactive molecules. In a rat model of controlled cortical impact (CCI), we determined that animals supplemented with a nuclear fraction of bovine thymus (TNF) display greatly improved performance on beam balance and spatial memory tests following CCI. Using RNA-Seq, we identified an array of signaling pathways that are modulated by TNF supplementation in rat hippocampus, including those involved in the process of autophagy. We further show that bovine thymus-derived extracts contain antigens found in neural tissues and that supplementation of rats with thymus extracts induces production of serum IgG antibodies against neuronal and glial antigens, which may explain the enhanced animal recovery following CCI through possible oral tolerance mechanism. Collectively, our data demonstrate, for the first time, the potency of a nutritional supplement containing nuclear fraction of bovine thymus in enhancing the functional recovery from TBI.


Assuntos
Lesões Encefálicas Traumáticas , Extratos do Timo , Humanos , Ratos , Animais , Bovinos , Extratos do Timo/farmacologia , Extratos do Timo/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Neurônios , Neuroglia , Hipocampo , Modelos Animais de Doenças
2.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494167

RESUMO

Ovarian insufficiency and ovariectomy are characterized by deregulated heat loss mechanisms. Unlike hormone therapy, ERr 731 (a standardized botanical extract of Siberian rhubarb Rheum rhaponticum L. high in rhaponticin) acts like a selective estrogen receptor modulator for ERß receptors and may offer a higher degree of safety while maintaining the desired efficacy profile. In this study, we examined the relationship between oral administration of ERr 731 and the underlying components of skin vasomotion responses in an ovariectomized (OVX) rat model. ERr 731 dose-dependently reduced tail skin temperature (Tskin) values by an average of 1 °C. The rapid onset of this effect was observed in 1 and 3 mg/kg/day ERr 731 groups as early as day 2 of administration, and remained in place for the duration of the treatment (2 weeks). Substituting ERr 731 after E2 withdrawal helped maintain body temperature similarly to E2 alone, suggesting the usefulness of ERr 731 for replacing existing hormonal therapy in humans. ERr 731 also acted as a highly selective agonist for ERß in the hypothalamus of OVX rats, as well as in ERα/ß cell-based reporter assays. These data validate the OVX/Tskin rat model as a suitable screening platform to evaluate botanical and pharmaceutical treatments of menopause, while providing further evidence for the efficacy of ERr 731 towards alleviating vasomotor menopausal symptoms and improving wellbeing during the menopausal transition.


Assuntos
Fitoestrógenos/química , Fitoestrógenos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Rheum/química , Sistema Vasomotor/efeitos dos fármacos , Animais , Biomarcadores , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Fogachos , Menopausa/efeitos dos fármacos , Estrutura Molecular , Ovariectomia , Pós-Menopausa , Ratos
3.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299002

RESUMO

Culinary sage (Salvia officinalis L.) is a common spice plant in the mint family (Lamiaceae) well known for its distinctive culinary and traditional medicinal uses. Sage tea has been used traditionally as a brain-enhancing tonic and extracts from sage have been reported to have both cognitive and memory enhancing effects. Brain-derived neurotrophic factor (BDNF) is an endogenous signaling molecule involved in cognition and memory function. In this study, activity-guided fractionation employing preparative reverse-phase high performance liquid chromatography (RP-HPLC) of culinary sage extracts led to the discovery of benzyl 6-O-ß-D-apiofuranosyl-ß-D-glucoside (B6AG) as a natural product that upregulates transcription of neurotrophic factors in C6 glioma cells. Purified B6AG showed a moderate dose response, with upregulation of BDNF and with EC50 at 6.46 µM. To better understand the natural variation in culinary sage, B6AG was quantitated in the leaves of several commercial varieties by liquid chromatography-mass spectrometry (LC-MS). The level of B6AG in dried culinary sage was found to range from 334 ± 14 to 698 ± 65 µg/g. This study provided a foundation for future investigations, including quantitative inquiries on the distribution of B6AG within the different plant organs, explorations in optimizing post-harvest practices, and aid in the development of sage varieties with elevated levels of B6AG.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glioma/metabolismo , Folhas de Planta/química , Salvia officinalis/química , Transdução de Sinais/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Glioma/genética , Espectrometria de Massas , Ratos , Transdução de Sinais/genética
4.
Int J Mol Sci ; 22(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067450

RESUMO

The endocannabinoid system (ECS) consists of endogenous cannabinoids, their receptors, and metabolic enzymes that play a critical homeostatic role in modulating polyunsaturated omega fatty acid (PUFA) signaling to maintain a balanced inflammatory and redox state. Whole food-based diets and dietary interventions linked to PUFAs of animal (fish, calamari, krill) or plant (hemp, flax, walnut, algae) origin, as well as full-spectrum hemp oils, are increasingly used to support the ECS tone, promote healthy metabolism, improve risk factors associated with cardiovascular disorders, encourage brain health and emotional well-being, and ameliorate inflammation. While hemp cannabinoids of THC and CBD groups show distinct but complementary actions through a variety of cannabinoid (CB1 and CB2), adenosine (A2A), and vanilloid (TRPV1) receptors, they also modulate PUFA metabolism within a wide variety of specialized lipid mediators that promote or resolve inflammation and oxidative stress. Clinical evidence reviewed in this study links PUFAs and cannabinoids to changes in ECS tone, immune function, metabolic and oxidative stress adaptation, and overall maintenance of a well-balanced systemic function of the body. Understanding how the body coordinates signals from the exogenous and endogenous ECS modulators is critical for discerning the underlying molecular mechanisms of the ECS tone in healthy and disease states. Nutritional and lifestyle interventions represent promising approaches to address chronic metabolic and inflammatory disorders that may overlap in the population at risk. Further investigation and validation of dietary interventions that modulate the ECS are required in order to devise clinically successful second-generation management strategies.


Assuntos
Cannabis/metabolismo , Endocanabinoides/metabolismo , Ácidos Graxos Insaturados/metabolismo , Extratos Vegetais/metabolismo , Adenosina/metabolismo , Animais , Canabinoides/metabolismo , Dieta , Homeostase/fisiologia , Humanos , Inflamação/metabolismo , Metabolismo dos Lipídeos/fisiologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Canais de Cátion TRPV/metabolismo
5.
Int J Mol Sci ; 18(2)2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28212306

RESUMO

Overconsumption of energy dense foods and sedentary lifestyle are considered as major causes of obesity-associated insulin resistance and abnormal glucose metabolism. Results from both cohort studies and randomized trials suggested that anthocyanins from berries may lower metabolic risks, however these reports are equivocal. The present study was designed to examine effects of six berries with structurally diverse anthocyanin profiles (normalized to 400 µg/g total anthocyanin content) on development of metabolic risk factors in the C57BL/6 mouse model of polygenic obesity. Diets supplemented with blackberry (mono-glycosylated cyanidins), black raspberry (acylated mono-glycosylated cyanidins), blackcurrant (mono- and di-glycosylated cyanidins and delphinidins), maqui berry (di-glycosylated delphinidins), Concord grape (acylated mono-glycosylated delphinidins and petunidins), and blueberry (mono-glycosylated delphinidins, malvidins, and petunidins) showed a prominent discrepancy between biological activities of delphinidin/malvidin-versus cyanidin-type anthocyanins that could be explained by differences in their structure and metabolism in the gut. Consumption of berries also resulted in a strong shift in the gastrointestinal bacterial communities towards obligate anaerobes that correlated with decrease in the gastrointestinal luminal oxygen and oxidative stress. Further work is needed to understand mechanisms that lead to nearly anoxic conditions in the gut lumens, including the relative contributions of host, diet and/or microbial oxidative activity, and their implication to human health.


Assuntos
Antocianinas/química , Antocianinas/metabolismo , Frutas/metabolismo , Ração Animal , Animais , Composição Corporal , Peso Corporal , Cromatografia Líquida de Alta Pressão , Suplementos Nutricionais , Fezes/química , Microbioma Gastrointestinal , Glucose/metabolismo , Humanos , Resistência à Insulina , Camundongos , Estrutura Molecular , Consumo de Oxigênio
6.
Eur J Nutr ; 54(6): 1001-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25296887

RESUMO

PURPOSE: The vitamin D system plays a role in metabolism regulation. 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) suppressed 3T3-L1 white adipocyte differentiation. Vitamin D receptor (VDR) knockout mice showed increased energy expenditure, whereas mice with adipose-specific VDR over-expression showed decreased energy expenditure. Brown adipose tissue (BAT), now known to be present in adult humans, functions in non-shivering thermogenesis by uncoupling ATP synthesis from respiration and plays an important role in energy expenditure. However, the effects of 1,25(OH)2D3/VDR on brown adipocyte differentiation and mitochondrial respiration have not been reported. METHODS: mRNA expression of VDR and the metabolizing enzymes 1α-hydroxylase (CYP27B1) and 24-hydroxylase (CYP24A1) were examined in BAT of mice models of obesity and during brown adipocyte differentiation. The effects of 1,25(OH)2D3 and VDR over-expression on brown adipocyte differentiation and functional outcomes were evaluated. RESULTS: No significant changes in mRNA of VDR and CYP27B1 were noted in both diet-induced obese (DIO) and ob/ob mice, whereas uncoupling protein 1 mRNA was downregulated in BAT of ob/ob, but not DIO mice when compared to the controls. In contrast, mRNA of VDR, CYP24A1, and CYP27B1 were downregulated during brown adipocyte differentiation in vitro. 1,25(OH)2D3 dose-dependently suppressed brown adipocyte differentiation, accompanied by suppressed isoproterenol-stimulated oxygen consumption rates (OCR), maximal OCR and OCR from proton leak. Consistently, over-expression of VDR also suppressed brown adipocyte differentiation. Further, both 1,25(OH)2D3 and VDR over-expression suppressed PPARγ transactivation in brown preadipocytes. CONCLUSION: Our results demonstrate the suppressive effects of 1,25(OH)2D3/VDR signaling on brown adipocyte differentiation and mitochondrial respiration. The role of 1,25(OH)2D3/VDR system in regulating BAT development and function in obesity warrant further investigation.


Assuntos
Adipócitos Marrons/fisiologia , Calcitriol/fisiologia , Diferenciação Celular/fisiologia , Mitocôndrias/metabolismo , Consumo de Oxigênio/fisiologia , Receptores de Calcitriol/fisiologia , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Adipócitos Marrons/ultraestrutura , Animais , Calcitriol/farmacologia , Metabolismo Energético , Expressão Gênica , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Proteínas Mitocondriais/genética , Obesidade/metabolismo , PPAR gama/metabolismo , RNA Mensageiro/análise , Receptores de Calcitriol/deficiência , Receptores de Calcitriol/genética , Transdução de Sinais , Proteína Desacopladora 1 , Vitamina D3 24-Hidroxilase/genética
7.
Am J Physiol Cell Physiol ; 306(10): C918-30, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24627558

RESUMO

Pattern recognition receptors (PRR), Toll-like receptors (TLR), and nucleotide-oligomerization domain-containing proteins (NOD) play critical roles in mediating inflammation and modulating functions in white adipocytes in obesity. However, the role of PRR activation in brown adipocytes, which are recently found to be present in adult humans, has not been studied. Here we report that mRNA of TLR4, TLR2, NOD1, and NOD2 is upregulated, paralleled with upregulated mRNA of inflammatory cytokines and chemokines in the brown adipose tissue (BAT) of the obese mice. During brown adipocyte differentiation, mRNA and protein expression of NOD1 and TLR4, but not TLR2 and NOD2, is also increased. Activation of TLR4, TLR2, or NOD1 in brown adipocytes induces activation of NF-κB and MAPK signaling pathways, leading to inflammatory cytokine/chemokine mRNA expression and/or protein secretion. Moreover, activation of TLR4, TLR2, or NOD1 attenuates both basal and isoproterenol-induced uncoupling protein 1 (UCP-1) expression without affecting mitochondrial biogenesis and lipid accumulation in brown adipocytes. Cellular bioenergetics measurements confirm that attenuation of UCP-1 expression by PRR activation is accompanied by suppression of both basal and isoproterenol-stimulated oxygen consumption rates and isoproterenol-induced uncoupled respiration from proton leak; however, maximal respiration and ATP-coupled respiration are not changed. Further, the attenuation of UCP-1 by PRR activation appears to be mediated through downregulation of the UCP-1 promoter activities. Taken together, our results demonstrate the role of selected PRR activation in inducing inflammation and downregulation of UCP-1 expression and mitochondrial respiration in brown adipocytes. Our results uncover novel targets in BAT for obesity treatment and prevention.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Obesidade/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/patologia , Animais , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica , Transporte de Elétrons/efeitos dos fármacos , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Canais Iônicos/genética , Isoproterenol/farmacologia , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Proteína Desacopladora 1
8.
Nutr Cancer ; 66(8): 1304-14, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25264855

RESUMO

Walnuts contain many bioactive components that may slow cancer growth. A previous report showed that a diet supplemented with walnuts decreased the tumor size formed by MDA-MB-231 human cancer cells injected into nude mice. However, the mechanism of action was never determined. We characterized the effects of a methanol extract prepared from walnuts on human MDA-MB-231, MCF7, and HeLa cells. The extract was cytotoxic to all cancer cells. We identified compounds from the methanol extract that induced this cytotoxicity. The predominant compounds were Tellimagrandin I and Tellimagrandin II, members of the ellagitannin family. We also show a walnut extract decreases the intracellular pH, depolarizes the mitochondrial membrane with release of cytochrome c and phosphatidylserine flipping. The antimitogenic effects of walnut extract were associated with a twofold reduction of mitochondria respiration. These results suggest impairment of mitochondrial function and apoptosis as relevant mechanism of anticancer effects of the walnut extract.


Assuntos
Taninos Hidrolisáveis/farmacologia , Juglans/química , Nozes/química , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina B1/metabolismo , Citocromos c/metabolismo , Dieta , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Extratos Vegetais/farmacologia
9.
Biomolecules ; 14(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38672413

RESUMO

Individuals who are overweight or obese are at increased risk of developing prediabetes and type 2 diabetes, yet the direct molecular mechanisms that connect diabetes to obesity are not clear. Chronic, sustained inflammation is considered a strong risk factor in these interactions, directed in part by the short-lived gene expression programs encoding for cytokines and pro-inflammatory mediators. In this study, we show that triptolide administration in the C57BL/6 diet-induced obese mice at up to 10 µg/kg/day for 10 weeks attenuated the development of insulin resistance and diabetes, but not obesity, in these animals. Significant reductions in adipose tissue inflammation and improved insulin sensitivity were observed in the absence of changes in food intake, body weight, body composition, or energy expenditure. Analysis of the core cluster of biomarkers that drives pro-inflammatory responses in the metabolic tissues suggested TNF-α as a critical point that affected the co-development of inflammation and insulin resistance, but also pointed to the putatively protective roles of increased COX-2 and IL-17A signaling in the mediation of these pathophysiological states. Our results show that reduction of diet-induced inflammation confers partial protection against insulin resistance, but not obesity, and suggest the possibility of achieving overweight phenotypes that are accompanied by minimal insulin resistance if inflammation is controlled.


Assuntos
Diterpenos , Compostos de Epóxi , Resistência à Insulina , Camundongos Endogâmicos C57BL , Obesidade , Fenantrenos , Animais , Compostos de Epóxi/farmacologia , Compostos de Epóxi/administração & dosagem , Diterpenos/farmacologia , Diterpenos/administração & dosagem , Fenantrenos/farmacologia , Fenantrenos/administração & dosagem , Obesidade/metabolismo , Obesidade/imunologia , Camundongos , Masculino , Inflamação/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Interleucina-17/metabolismo , Interleucina-17/genética , Dieta Hiperlipídica/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/imunologia , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Metabolismo Energético/efeitos dos fármacos
10.
Nutrients ; 16(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202000

RESUMO

Individually, metabolic variations can significantly influence predisposition to obesity in the form of the obesity-prone (super-responders) and obesity-resistant (non-responders) phenotypes in response to modern calorie-dense diets. In this study, C57BL/6J mice (n = 76) were randomly assigned to either a low-fat diet (LFD) or a high-fat diet (HFD) for 6 weeks, followed by selection of the normally obese (HFD), non-responders (NR), super-responders (SR), or super-responders switched back to the low-fat diet (SR-LFD) for an additional 8 weeks. SR mice showed the highest gains in body weight, lean and fat body mass, and total and free water, in part due to increased feed efficiency, despite having a respiratory exchange ratio (RER) similar to that of NR mice. A switch to the LFD was sufficient to revert most of the observed physiological changes in the SR-LFD mice; however, voluntary physical activity and exercise capacity did not return to the basal level. NR mice showed the highest food intake, lowest feed efficiency, increased oxygen consumption during the light (rest) cycle, increased physical activity during the dark (active) cycle, and increased heat production during both cycles. These variations were observed in the absence of changes in food intake and fecal parameters; however, NR fecal lipid content was lower, and the NR fecal microbiome profile was characterized by reduced abundance of Actinobacteria. Taken together, our findings suggest that NR mice showed an increased ability to metabolize excessive dietary fats in skeletal muscle at the expense of reduced exercise capacity that persisted for the duration of the study. These findings underscore the need for further comprehensive investigations into the mechanisms of obesity resistance, as they hold potential implications for weight-loss strategies in human subjects.


Assuntos
Dieta Hiperlipídica , Metabolismo dos Lipídeos , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Fenótipo
11.
Metabolites ; 14(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276304

RESUMO

Obesity-resistant (non-responder, NR) phenotypes that exhibit reduced susceptibility to developing obesity despite being exposed to high dietary fat are crucial in exploring the metabolic responses that protect against obesity. Although several efforts have been made to study them in mice and humans, the individual protective mechanisms are poorly understood. In this exploratory study, we used a polygenic C57BL/6J mouse model of diet-induced obesity to show that NR mice developed healthier fat/lean body mass ratios (0.43 ± 0.05) versus the obesity-prone (super-responder, SR) phenotypes (0.69 ± 0.07, p < 0.0001) by upregulating gene expression networks that promote the accumulation of type 2a, fast-twitch, oxidative muscle tissues. This was achieved in part by a metabolic adaptation in the form of blood glucose sparing, thus aggravating glucose tolerance. Resistance to obesity in NR mice was associated with 4.9-fold upregulated mitoferrin 1 (Slc25a37), an essential mitochondrial iron importer. SR mice also showed fecal volatile metabolite signatures of enhanced short-chain fatty acid metabolism, including increases in detrimental methyl formate and ethyl propionate, and these effects were reversed in NR mice. Continued research into obesity-resistant phenotypes can offer valuable insights into the underlying mechanisms of obesity and metabolic health, potentially leading to more personalized and effective approaches for managing weight and related health issues.

12.
J Cell Physiol ; 228(5): 1120-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23065845

RESUMO

A group of bioactive steroidal glycosides (pregnanes) with anorectic activity in animals was isolated from several genera of milkweeds including Hoodia and Asclepias. In this study, we investigated the effects, structure-activity relationships, and mechanism of action of pregnane glycosides on steroidogenesis in human adrenocortical H295R cells. Administration of pregnane glycosides for 24 h suppressed the basal and forskolin-stimulated release of androstenedione, corticosterone, and cortisone from H295R cells. The conversion of progesterone to 11-deoxycorticosterone and 17-hydroxyprogesterone to either androstenedione or 11-deoxycortisol was most strongly affected, with 12-cinnamoyl-, benzoyl-, and tigloyl-containing pregnanes showing the highest activity. Incubation of pregnane glycosides for 24 h had no effect on mRNA transcripts of CYP11A1, CYP21A1, CYP11B1 cytochrome enzymes and steroidogenic acute regulatory protein (StaR) protein, yet resulted in twofold decrease in HSD3B1 mRNA levels. At the same time, pregnane glycosides had no effect on the CYP1, 2, or 3 drug and steroid metabolism enzymes and showed weak Na(+) /K(+) ATPase and glucocorticoid receptor binding. Taken together, these data suggest that pregnane glycosides specifically suppress steroidogenesis through strong inhibition of 11ß-hydroxylase and steroid 17-alpha-monooxygenase, and weak inhibition of cytochrome P450 side chain cleavage enzyme and 21ß-hydroxylase, but not 3ß-hydroxysteroid dehydrogenase/isomerase.


Assuntos
3-Hidroxiesteroide Desidrogenases , Enzima de Clivagem da Cadeia Lateral do Colesterol , Glicosídeos/administração & dosagem , Pregnanos/administração & dosagem , Esteroide 11-beta-Hidroxilase , Esteroide 17-alfa-Hidroxilase , 3-Hidroxiesteroide Desidrogenases/antagonistas & inibidores , 3-Hidroxiesteroide Desidrogenases/biossíntese , Corticosteroides/metabolismo , Androstenodiona/análogos & derivados , Animais , Linhagem Celular Tumoral , Enzima de Clivagem da Cadeia Lateral do Colesterol/antagonistas & inibidores , Enzima de Clivagem da Cadeia Lateral do Colesterol/biossíntese , Corticosterona/biossíntese , Corticosterona/metabolismo , Cortisona/metabolismo , Humanos , Progesterona/análogos & derivados , Progesterona/biossíntese , Esteroide 11-beta-Hidroxilase/antagonistas & inibidores , Esteroide 11-beta-Hidroxilase/biossíntese , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Esteroide 17-alfa-Hidroxilase/biossíntese , Relação Estrutura-Atividade
13.
Wound Repair Regen ; 21(5): 688-96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23937635

RESUMO

Brassinosteroids are plant growth hormones involved in cell growth, division, and differentiation. Their effects in animals are largely unknown, although recent studies showed that the anabolic properties of brassinosteroids are possibly mediated through the phosphoinositide 3-kinase/protein kinase B signaling pathway. Here, we examined biological activity of homobrassinolide (HB) and its synthetic analogues in in vitro proliferation and migration assays in murine fibroblast and primary keratinocyte cell culture. HB stimulated fibroblast proliferation and migration and weakly induced keratinocyte proliferation in vitro. The effects of topical HB administration on progression of wound closure were further tested in the mouse model of cutaneous wound healing. C57BL/6J mice were given a full-thickness dermal wound, and the rate of wound closure was assessed daily for 10 days, with adenosine receptor agonist CGS-21680 as a positive control. Topical application of brassinosteroid significantly reduced wound size and accelerated wound healing in treated animals. mRNA levels of transforming growth factor beta and intercellular adhesion molecule 1 were significantly lower, while tumor necrosis factor alpha was nearly suppressed in the wounds from treated mice. Our data suggest that topical application of brassinosteroids accelerates wound healing by positively modulating inflammatory and reepithelialization phases of the wound repair process, in part by enhancing Akt signaling in the skin at the edges of the wound and enhancing migration of fibroblasts in the wounded area. Targeting this signaling pathway with brassinosteroids may represent a promising approach to the therapy of delayed wound healing.


Assuntos
Brassinosteroides/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Pele/patologia , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Cicatrização/efeitos dos fármacos , Administração Tópica , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Molécula 1 de Adesão Intercelular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Pele/lesões , Fator de Crescimento Transformador beta/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos dos fármacos
14.
Metabolites ; 13(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37755296

RESUMO

Obesity is a multifactorial disorder that is remarkably heterogeneous. It presents itself in a variety of phenotypes that can be metabolically unhealthy or healthy, associate with no or multiple metabolic risk factors, gain extreme body weight (super-responders), as well as resist obesity despite the obesogenic environment (non-responders). Progression to obesity is ultimately linked to the overall net energy balance and activity of different metabolic fluxes. This is particularly evident from variations in fatty acids oxidation, metabolic fluxes through the pyruvate-phosphoenolpyruvate-oxaloacetate node, and extracellular accumulation of Krebs cycle metabolites, such as citrate. Patterns of fat accumulation with a focus on visceral and ectopic adipose tissue, microbiome composition, and the immune status of the gastrointestinal tract have emerged as the most promising targets that allow personalization of obesity and warrant further investigations into the critical issue of a wider and long-term weight control. Advances in understanding the biochemistry mechanisms underlying the heterogenous obesity phenotypes are critical to the development of targeted strategies to maintain healthy weight.

15.
Curr Nutr Rep ; 12(1): 151-166, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36738429

RESUMO

PURPOSE OF REVIEW: Current research has shown that berry-derived polymeric substrates that resist human digestion (dietary fibers and polyphenols) are extensively metabolized in the gastrointestinal tract dominated by microbiota. This review assesses current epidemiological, experimental, and clinical evidence of how berry (strawberry, blueberry, raspberry, blackberry, cranberry, black currant, and grapes) phytochemicals interact with the microbiome and shape health or metabolic risk factor outcomes. RECENT FINDINGS: There is a growing evidence that the compositional differences among complex carbohydrate fractions and classes of polyphenols define reversible shifts in microbial populations and human metabolome to promote gastrointestinal health. Interventions to prevent gastrointestinal inflammation and improve metabolic outcomes may be achieved with selection of berries that provide distinct polysaccharide substrates for selective multiplication of beneficial microbiota or oligomeric decoys for binding and elimination of the pathogens, as well as phenolic substrates that hold potential to modulate gastrointestinal mucins, reduce luminal oxygen, and release small phenolic metabolites signatures capable of ameliorating inflammatory and metabolic perturbations. These mechanisms may explain many of the differences in microbiota and host gastrointestinal responses associated with increased consumption of berries, and highlight potential opportunities to intentionally shift gut microbiome profiles or to modulate risk factors associated with better nutrition and health outcomes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Frutas/metabolismo , Polifenóis/metabolismo , Trato Gastrointestinal
16.
Nutrients ; 15(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36986057

RESUMO

Green leaf biomass is one of the largest underutilized sources of nutrients worldwide. Whether it is purposely cultivated (forage crops, duckweed) or upcycled as a waste stream from the mass-produced agricultural crops (discarded leaves, offcuts, tops, peels, or pulp), the green biomass can be established as a viable alternative source of plant proteins in food and feed processing formulations. Rubisco is a major component of all green leaves, comprising up to 50% of soluble leaf protein, and offers many advantageous functional features in terms of essential amino acid profile, reduced allergenicity, enhanced gelation, foaming, emulsification, and textural properties. Nutrient profiles of green leaf biomass differ considerably from those of plant seeds in protein quality, vitamin and mineral concentration, and omega 6/3 fatty acid profiles. Emerging technological improvements in processing fractions, protein quality, and organoleptic profiles will enhance the nutritional quality of green leaf proteins as well as address scaling and sustainability challenges associated with the growing global demand for high quality nutrition.


Assuntos
Produtos Agrícolas , Folhas de Planta , Folhas de Planta/química , Valor Nutritivo , Proteínas de Plantas/metabolismo , Minerais/análise
17.
Foods ; 12(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36832838

RESUMO

Mushroom by-products are economical and eco-friendly raw materials with bioactive and functional characteristics that allow for potential uses as food ingredients. However, mushroom upcycling has yet to be fully exploited, despite the many opportunities that mushrooms may offer. The mushroom protein by-product (MPBP) resulting from mushroom protein production was characterized (chemical composition, physicochemical attributes, and functional properties) and incorporated into plant-based batter formulations to prepare four experimental groups with different ratios (w/w, %) of wheat flour (W) to MPBP (100 W, 75 W/25 MPBP, 25 W/75 MPBP, and 100 MPBP). Subsequently, the batter was used for frying batter-coated shrimp, which was evaluated for cooking loss, coating pick-up, oil absorption, and color parameters (L*, a*, and b*). MPBP showed high content of dietary fiber, mainly insoluble fiber (49%), and it is potentially suited for the formulation of high-fiber food products. The MPBP physicochemical attributes pH (11.69), water activity (0.34), L* (58.56), a* (5.61), b* (18.03), and particle size distribution (250-500 µm (22.12%), 125-250 µm (41.18%), 63-125 µm (37.53%), and < 63 µm (0.82%) were noted. Concerning the MPBP functional characteristics, solubility (12.7%), emulsifying activity index (7.6 m2/gr), emulsion stability index (52.4 min), water holding capacity (4.9%), and oil holding capacity (4.8%) were reported. Adding MPBP into batter formulations for batter-coated shrimp resulted in higher values of cooking loss, oil absorption, coating pick-up, and a* color, while lowering L* and b* values. The best experimental results were reported for group 75 W/25 MPBP, which indicates that MPBP can potentially be accepted as a novel batter ingredient for partial substitution of wheat flour.

18.
Nutrients ; 15(9)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37432335

RESUMO

Adequate antioxidant supply is essential for maintaining metabolic homeostasis and reducing oxidative stress during detoxification. The emerging evidence suggests that certain classes of phytonutrients can help support the detoxification process by stimulating the liver to produce detoxification enzymes or acting as antioxidants that neutralize the harmful effects of free radicals. This study was designed to examine the effects of a guided 28-day metabolic detoxification program in healthy adults. The participants were randomly assigned to consume a whole food, multi-ingredient supplement (n = 14, education and intervention) or control (n = 18, education and healthy meal) daily for the duration of the trial. The whole food supplement contained 37 g/serving of a proprietary, multicomponent nutritional blend in the form of a rehydratable shake. Program readiness was ensured at baseline using a validated self-perceived wellness score and a blood metabolic panel, indicating stable emotional and physical well-being in both groups. No significant changes or adverse effects were found on physical or emotional health, cellular glutathione (GSH) and the GSH:GSSG ratio, porphyrin, and hepatic detoxification biomarkers in urine. The intervention was positively associated with a 23% increase in superoxide dismutase (p = 0.06) and a 13% increase in glutathione S-transferase (p = 0.003) activities in the blood. This resulted in a 40% increase in the total cellular antioxidant capacity (p = 0.001) and a 13% decrease in reactive oxygen species (p = 0.002) in isolated PBMCs from participants in the detoxification group. Our findings indicate that consuming a whole food nutritional intervention as a part of the guided detoxification program supported phase II detoxification, in part, by promoting enhanced free radical scavenging and maintaining redox homeostasis under the body's natural glutathione recycling capacity.


Assuntos
Antioxidantes , Desintoxicação Metabólica Fase II , Adulto , Humanos , Voluntários Saudáveis , Glutationa , Suplementos Nutricionais
19.
Nutrients ; 15(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375558

RESUMO

Chronic pain is a critical health issue in the US that is routinely managed pharmacologically with diminishing results. The widespread misuse and abuse of prescription opioid pain medications have caused both healthcare providers and patients to seek alternative therapeutic options. Several dietary ingredients have been traditionally used for pain relief and are known to have potential analgesic properties. This double-blind, placebo-controlled randomized clinical trial aimed to test whether a novel combination of full spectrum hemp oil (phytocannabinoids), calamari oil (omega-3 fatty acids), and broccoli (glucosinolates) could reduce chronic pain and attenuate damage from oxidative stress in adults seeking chiropractic care. Participants (average age = 54.8 ± 13.6 years old) were randomly assigned to consume a whole-food, multi-ingredient supplement (n = 12, intervention and standard chiropractic care) or placebo (n = 13, mineral oil and standard chiropractic care) daily for 12 weeks. The subjects' self-reported perceived pain, pain interference, and reactive oxygen species (ROS) status in the peripheral blood mononuclear cells (PBMC) were quantified at baseline, mid-checkpoint, and postintervention. The intervention was positively associated with a 52% decrease in pain intensity and several parameters of pain interference, including quality of sleep. Decreases in the markers of oxidative stress were also observed in the participants from the intervention group (29.4% decrease in PMBC ROS). Our findings indicated that supplementation with a novel combination of hemp oil, calamari oil, and broccoli has the potential to manage chronic pain when combined with standard chiropractic care, as suggested by its effects on pain intensity and oxidative stress.


Assuntos
Brassica , Dor Crônica , Ácidos Graxos Ômega-3 , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Leucócitos Mononucleares , Dor Crônica/tratamento farmacológico , Espécies Reativas de Oxigênio/farmacologia , Suplementos Nutricionais , Estresse Oxidativo , Método Duplo-Cego
20.
Am J Physiol Endocrinol Metab ; 303(5): E652-8, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22785239

RESUMO

The prevalence of obesity is increasing globally, and obesity is a major risk factor for metabolic diseases such as type 2 diabetes. Previously, we reported that oral administration of homobrassinolide (HB) to healthy rats triggered a selective anabolic response that was associated with lower blood glucose. Therefore, the aim of this study was to evaluate the effects of HB administration on glucose metabolism, insulin sensitivity, body composition, and gluconeogenic gene expression profiles in liver of C57BL/6J high-fat diet-induced obese mice. Acute oral administration of 50-300 mg/kg HB to obese mice resulted in a dose-dependent decrease in fasting blood glucose within 3 h of treatment. Daily chronic administration of HB (50 mg/kg for 8 wk) ameliorated hyperglycemia and improved oral glucose tolerance associated with obesity without significantly affecting body weight or body composition. These changes were accompanied by lower expression of two key gluconeogenic enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G-6-Pase), and increased phosphorylation of AMP-activated protein kinase in the liver and muscle tissue. In vitro, HB treatment (1-15 µM) inhibited cyclic AMP-stimulated but not dexamethasone-stimulated upregulation of PEPCK and G-6-Pase mRNA levels in H4IIE rat hepatoma cells. Among a series of brassinosteroid analogs related to HB, only homocastasterone decreased glucose production in cell culture significantly. These results indicate the antidiabetic effects of brassinosteroids and begin to elucidate their putative cellular targets both in vitro and in vivo.


Assuntos
Brassinosteroides/uso terapêutico , Suplementos Nutricionais , Hipoglicemiantes/uso terapêutico , Obesidade/dietoterapia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Brassinosteroides/administração & dosagem , Linhagem Celular , AMP Cíclico/antagonistas & inibidores , AMP Cíclico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hiperglicemia/prevenção & controle , Resistência à Insulina , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/etiologia , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA