Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
J Evol Biol ; 36(2): 444-460, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36514852

RESUMO

Mutant dynamics in fragmented populations have been studied extensively in evolutionary biology. Yet, open questions remain, both experimentally and theoretically. Some of the fundamental properties predicted by models still need to be addressed experimentally. We contribute to this by using a combination of experiments and theory to investigate the role of migration in mutant distribution. In the case of neutral mutants, while the mean frequency of mutants is not influenced by migration, the probability distribution is. To address this empirically, we performed in vitro experiments, where mixtures of GFP-labelled ("mutant") and non-labelled ("wid-type") murine cells were grown in wells (demes), and migration was mimicked via cell transfer from well to well. In the presence of migration, we observed a change in the skewedness of the distribution of the mutant frequencies in the wells, consistent with previous and our own model predictions. In the presence of de novo mutant production, we used modelling to investigate the level at which disadvantageous mutants are predicted to exist, which has implications for the adaptive potential of the population in case of an environmental change. In panmictic populations, disadvantageous mutants can persist around a steady state, determined by the rate of mutant production and the selective disadvantage (selection-mutation balance). In a fragmented system that consists of demes connected by migration, a steady-state persistence of disadvantageous mutants is also observed, which, however, is fundamentally different from the mutation-selection balance and characterized by higher mutant levels. The increase in mutant frequencies above the selection-mutation balance can be maintained in small ( N < N c ) demes as long as the migration rate is sufficiently small. The migration rate above which the mutants approach the selection-mutation balance decays exponentially with N / N c . The observed increase in the mutant numbers is not explained by the change in the effective population size. Implications for evolutionary processes in diseases are discussed, where the pre-existence of disadvantageous drug-resistant mutant cells or pathogens drives the response of the disease to treatments.


Assuntos
Modelos Genéticos , Seleção Genética , Animais , Camundongos , Mutação , Dinâmica Populacional , Evolução Biológica
2.
PLoS Comput Biol ; 17(12): e1009713, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34936647

RESUMO

To study viral evolutionary processes within patients, mathematical models have been instrumental. Yet, the need for stochastic simulations of minority mutant dynamics can pose computational challenges, especially in heterogeneous systems where very large and very small sub-populations coexist. Here, we describe a hybrid stochastic-deterministic algorithm to simulate mutant evolution in large viral populations, such as acute HIV-1 infection, and further include the multiple infection of cells. We demonstrate that the hybrid method can approximate the fully stochastic dynamics with sufficient accuracy at a fraction of the computational time, and quantify evolutionary end points that cannot be expressed by deterministic models, such as the mutant distribution or the probability of mutant existence at a given infected cell population size. We apply this method to study the role of multiple infection and intracellular interactions among different virus strains (such as complementation and interference) for mutant evolution. Multiple infection is predicted to increase the number of mutants at a given infected cell population size, due to a larger number of infection events. We further find that viral complementation can significantly enhance the spread of disadvantageous mutants, but only in select circumstances: it requires the occurrence of direct cell-to-cell transmission through virological synapses, as well as a substantial fitness disadvantage of the mutant, most likely corresponding to defective virus particles. This, however, likely has strong biological consequences because defective viruses can carry genetic diversity that can be incorporated into functional virus genomes via recombination. Through this mechanism, synaptic transmission in HIV might promote virus evolvability.


Assuntos
Infecções por HIV , HIV-1 , Interações Hospedeiro-Patógeno/genética , Algoritmos , Células/virologia , Biologia Computacional , Evolução Molecular , Infecções por HIV/genética , Infecções por HIV/transmissão , Infecções por HIV/virologia , HIV-1/genética , HIV-1/patogenicidade , Humanos , Mutação/genética , Processos Estocásticos , Replicação Viral/genética
3.
Bull Math Biol ; 84(12): 144, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36334172

RESUMO

It is well known in the literature that human behavior can change as a reaction to disease observed in others, and that such behavioral changes can be an important factor in the spread of an epidemic. It has been noted that human behavioral traits in disease avoidance are under selection in the presence of infectious diseases. Here, we explore a complementary trend: the pathogen itself might experience a force of selection to become less "visible," or less "symptomatic," in the presence of such human behavioral trends. Using a stochastic SIR agent-based model, we investigated the co-evolution of two viral strains with cross-immunity, where the resident strain is symptomatic while the mutant strain is asymptomatic. We assumed that individuals exercised self-regulated social distancing (SD) behavior if one of their neighbors was infected with a symptomatic strain. We observed that the proportion of asymptomatic carriers increased over time with a stronger effect corresponding to higher levels of self-regulated SD. Adding mandated SD made the effect more significant, while the existence of a time-delay between the onset of infection and the change of behavior reduced the advantage of the asymptomatic strain. These results were consistent under random geometric networks, scale-free networks, and a synthetic network that represented the social behavior of the residents of New Orleans.


Assuntos
Epidemias , Modelos Biológicos , Humanos , Conceitos Matemáticos
4.
J Theor Biol ; 509: 110499, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33130064

RESUMO

While resistance mutations are often implicated in the failure of cancer therapy, lack of response also occurs without such mutants. In bladder cancer mouse xenografts, repeated chemotherapy cycles have resulted in cancer stem cell (CSC) enrichment, and consequent loss of therapy response due to the reduced susceptibility of CSCs to drugs. A particular feedback loop present in the xenografts has been shown to promote CSC enrichment in this system. Yet, many other regulatory loops might also be operational and might promote CSC enrichment. Their identification is central to improving therapy response. Here, we perform a comprehensive mathematical analysis to define what types of regulatory feedback loops can and cannot contribute to CSC enrichment, providing guidance to the experimental identification of feedback molecules. We derive a formula that reveals whether or not the cell population experiences CSC enrichment over time, based on the properties of the feedback. We find that negative feedback on the CSC division rate or positive feedback on differentiated cell death rate can lead to CSC enrichment. Further, the feedback mediators that achieve CSC enrichment can be secreted by either CSCs or by more differentiated cells. The extent of enrichment is determined by the CSC death rate, the CSC self-renewal probability, and by feedback strength. Defining these general characteristics of feedback loops can guide the experimental screening for and identification of feedback mediators that can promote CSC enrichment in bladder cancer and potentially other tumors. This can help understand and overcome the phenomenon of CSC-based therapy resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Retroalimentação , Camundongos , Células-Tronco Neoplásicas
5.
Carcinogenesis ; 41(6): 751-760, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31904094

RESUMO

Accumulating evidence suggests that aspirin has anti-tumorigenic properties in colorectal cancer (CRC). Herein, we undertook a comprehensive and systematic series of in vivo animal experiments followed by 3D-mathematical modeling to determine the kinetics of aspirin's anti-cancer effects on CRC growth. In this study, CRC xenografts were generated using four CRC cell lines with and without PIK3CA mutations and microsatellite instability, and the animals were administered with various aspirin doses (0, 15, 50, and 100 mg/kg) for 2 weeks. Cell proliferation, apoptosis and protein expression were evaluated, followed by 3D-mathematical modeling analysis to estimate cellular division and death rates and their impact on aspirin-mediated changes on tumor growth. We observed that aspirin resulted in a dose-dependent decrease in the cell division rate, and a concomitant increase in the cell death rates in xenografts from all cell lines. Aspirin significantly inhibited cell proliferation as measured by Ki67 staining (P < 0.05-0.01). The negative effect of aspirin on the rate of tumor cell proliferation was more significant in xenograft tumors derived from PIK3CA mutant versus wild-type cells. A computational model of 3D-tumor growth suggests that the growth inhibitory effect of aspirin on the tumor growth kinetics is due to a reduction of tumor colony formation, and that this effect is sufficiently strong to be an important contributor to the reduction of CRC incidence in aspirin-treated patients. In conclusion, we provide a detailed kinetics of aspirin-mediated inhibition of tumor cell proliferation, which support the epidemiological data for the observed protective effect of aspirin in CRC patients.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Proliferação de Células , Neoplasias Colorretais/prevenção & controle , Modelos Teóricos , Animais , Apoptose , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Cinética , Masculino , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Proc Biol Sci ; 287(1925): 20192468, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32290801

RESUMO

Human populations in many countries have undergone a phase of demographic transition, characterized by a major reduction in fertility at a time of increased resource availability. A key stylized fact is that the reduction in fertility is preceded by a reduction in mortality and a consequent increase in population density. Various theories have been proposed to account for the demographic transition process, including maladaptation, increased parental investment in fewer offspring, and cultural evolution. None of these approaches, including formal cultural evolutionary models of the demographic transitions, have addressed a possible direct causal relationship between a reduction in mortality and the subsequent decline in fertility. We provide mathematical models in which low mortality favours the cultural selection of low-fertility traits. This occurs because reduced mortality slows turnover in the model, which allows the cultural transmission advantage of low-fertility traits to outrace their reproductive disadvantage. For mortality to be a crucial determinant of outcome, a cultural transmission bias is required where slow reproducers exert higher social influence. Computer simulations of our models that allow for exogenous variation in the death rate can reproduce the central features of the demographic transition process, including substantial reductions in fertility within only one to three generations. A model assuming continuous evolution of reproduction rates through imitation errors predicts fertility to fall below replacement levels if death rates are sufficiently low. This can potentially explain the very low preferred family sizes in Western Europe.


Assuntos
Evolução Biológica , Evolução Cultural , Fertilidade , Coeficiente de Natalidade , Europa (Continente) , Características da Família , Humanos , Infertilidade , Modelos Teóricos , Dinâmica Populacional , Reprodução
7.
J Theor Biol ; 460: 144-152, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30315815

RESUMO

Genome instability is a characteristic of most cancers, contributing to the acquisition of genetic alterations that drive tumor progression. One important source of genome instability is linked to telomere dysfunction in cells with critically short telomeres that lack p53-mediated surveillance of genomic integrity. Here we research the probability that cancer emerges through an evolutionary pathway that includes a telomere-induced phase of genome instability. To implement our models we use a hybrid stochastic-deterministic approach, which allows us to perform large numbers of simulations using biologically realistic population sizes and mutation rates, circumventing the traditional limitations of fully stochastic algorithms. The hybrid methodology should be easily adaptable to a wide range of evolutionary problems. In particular, we model telomere shortening and the acquisition of two mutations: Telomerase activation and p53 inactivation. We find that the death rate of unstable cells, and the number of cell divisions that p53 mutants can sustain beyond the normal senescence setpoint determine the likelihood that the first double mutant originates in a cell with telomere-induced instability. The model has applications to an influential telomerase-null mouse model and p16 silenced human cells. We end by discussing algorithmic performance and a measure for the accuracy of the hybrid approximation.


Assuntos
Carcinogênese/genética , Encurtamento do Telômero/fisiologia , Algoritmos , Animais , Inibidor p16 de Quinase Dependente de Ciclina/genética , Instabilidade Genômica , Humanos , Camundongos , Telomerase/genética
8.
PLoS Comput Biol ; 14(2): e1005967, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29447149

RESUMO

In order to maintain homeostasis, mature cells removed from the top compartment of hierarchical tissues have to be replenished by means of differentiation and self-renewal events happening in the more primitive compartments. As each cell division is associated with a risk of mutation, cell division patterns have to be optimized, in order to minimize or delay the risk of malignancy generation. Here we study this optimization problem, focusing on the role of division tree length, that is, the number of layers of cells activated in response to the loss of terminally differentiated cells, which is related to the balance between differentiation and self-renewal events in the compartments. Using both analytical methods and stochastic simulations in a metapopulation-style model, we find that shorter division trees are advantageous if the objective is to minimize the total number of one-hit mutants in the cell population. Longer division trees on the other hand minimize the accumulation of two-hit mutants, which is a more likely evolutionary goal given the key role played by tumor suppressor genes in cancer initiation. While division tree length is the most important property determining mutant accumulation, we also find that increasing the size of primitive compartments helps to delay two-hit mutant generation.


Assuntos
Diferenciação Celular/fisiologia , Simulação por Computador , Neoplasias/genética , Células-Tronco/citologia , Processos Estocásticos , Animais , Divisão Celular , Proliferação de Células , Biologia Computacional , Genes Supressores de Tumor , Hematopoese , Homeostase , Humanos , Modelos Biológicos , Mutação , Neoplasias/metabolismo , Probabilidade , Risco
9.
J Theor Biol ; 445: 166-186, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29499253

RESUMO

When performing complex tasks, coexistence of organisms in a shared environment can be achieved by means of different strategies. For example, individuals can evolve to complete all parts of the complex task, choosing self-sufficiency over cooperation. On the other hand, they may choose to split parts of the task and share the products for mutual benefit, such that distinct groups of the organisms specialize on a subset of elementary tasks. In contrast to the existing theory of specialization and task sharing for cells in multicellular organisms (or colonies of social insects), here we describe a mechanism of evolutionary branching which is based on cooperation and division of labor, and where selection happens at the individual level. Using a class of mathematical models and the methodology of adaptive dynamics, we investigate the conditions for such branching into distinct cooperating subgroups to occur. We show that, as long as performing multiple tasks is associated with additional cost, branching occurs for a wide parameter range, and this scenario is stable against the invasion of cheaters. We hypothesize that over time, this can lead to evolutionary speciation. Examples from bacterial evolution and the connection with the Black Queen Hypothesis are discussed. It is our hope that the theory of diversification rooted in cooperation may inspire further ecological research to identify more evolutionary examples consistent with this speciation mechanism.


Assuntos
Comportamento Animal/fisiologia , Evolução Biológica , Insetos/fisiologia , Modelos Biológicos , Comportamento Social , Animais
10.
PLoS Comput Biol ; 13(11): e1005864, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29176825

RESUMO

The mean conditional fixation time of a mutant is an important measure of stochastic population dynamics, widely studied in ecology and evolution. Here, we investigate the effect of spatial randomness on the mean conditional fixation time of mutants in a constant population of cells, N. Specifically, we assume that fitness values of wild type cells and mutants at different locations come from given probability distributions and do not change in time. We study spatial arrangements of cells on regular graphs with different degrees, from the circle to the complete graph, and vary assumptions on the fitness probability distributions. Some examples include: identical probability distributions for wild types and mutants; cases when only one of the cell types has random fitness values while the other has deterministic fitness; and cases where the mutants are advantaged or disadvantaged. Using analytical calculations and stochastic numerical simulations, we find that randomness has a strong impact on fixation time. In the case of complete graphs, randomness accelerates mutant fixation for all population sizes, and in the case of circular graphs, randomness delays mutant fixation for N larger than a threshold value (for small values of N, different behaviors are observed depending on the fitness distribution functions). These results emphasize fundamental differences in population dynamics under different assumptions on cell connectedness. They are explained by the existence of randomly occurring "dead zones" that can significantly delay fixation on networks with low connectivity; and by the existence of randomly occurring "lucky zones" that can facilitate fixation on networks of high connectivity. Results for death-birth and birth-death formulations of the Moran process, as well as for the (haploid) Wright Fisher model are presented.


Assuntos
Evolução Molecular , Mutação , Dinâmica Populacional , Biologia Computacional , Aptidão Genética , Modelos Biológicos , Modelos Estatísticos
11.
Bull Math Biol ; 80(5): 1345-1365, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28508298

RESUMO

Design principles of biological networks have been studied extensively in the context of protein-protein interaction networks, metabolic networks, and regulatory (transcriptional) networks. Here we consider regulation networks that occur on larger scales, namely the cell-to-cell signaling networks that connect groups of cells in multicellular organisms. These are the feedback loops that orchestrate the complex dynamics of cell fate decisions and are necessary for the maintenance of homeostasis in stem cell lineages. We focus on "minimal" networks that are those that have the smallest possible numbers of controls. For such minimal networks, the number of controls must be equal to the number of compartments, and the reducibility/irreducibility of the network (whether or not it can be split into smaller independent sub-networks) is defined by a matrix comprised of the cell number increments induced by each of the controlled processes in each of the compartments. Using the formalism of digraphs, we show that in two-compartment lineages, reducible systems must contain two 1-cycles, and irreducible systems one 1-cycle and one 2-cycle; stability follows from the signs of the controls and does not require magnitude restrictions. In three-compartment systems, irreducible digraphs have a tree structure or have one 3-cycle and at least two more shorter cycles, at least one of which is a 1-cycle. With further work and proper biological validation, our results may serve as a first step toward an understanding of ways in which these networks become dysregulated in cancer.


Assuntos
Linhagem da Célula , Células-Tronco/citologia , Animais , Comunicação Celular , Diferenciação Celular , Proliferação de Células , Retroalimentação Fisiológica , Homeostase , Humanos , Conceitos Matemáticos , Modelos Biológicos , Transdução de Sinais , Biologia de Sistemas
12.
J Opt Soc Am A Opt Image Sci Vis ; 35(4): B165-B183, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29603970

RESUMO

We use World Color Survey (WCS) data to design quantitative methods to study color categorization, with the focus on the "geometric" properties of categories, in particular, on studying their shape, and creating a consistent methodology to identify category boundaries. We introduce the notion of "No Man's Land" and "Some Man's Land" to distinguish color chips that belong to no color category and those that belong to some color category. We introduce a "color-stimulus-strength" function that characterizes color boundaries. While categories may come in a variety of shapes, and their boundaries are nonuniform and can vary in thickness, there are universal patterns that emerge. For example, the boundary-to-category-mass ratio is a decreasing function of category strength (i.e., stronger categories have relatively thinner boundaries), and boundary mass obeys a "square root"-like law as a function of category mass (i.e., roughly speaking, color categories behave like 2D circles). We further identify a relationship between color boundaries and Shannon's entropy, which can be calculated by using the field data of the WCS. We find that depending on the informational content of a given chip, it can belong to three distinct types: (I) strongly belonging to a color category; (II) belonging to a boundary between two or more categories; (III) not belonging to a category or a boundary. The last two cases can be interpreted in terms of evolution and temporal dynamics of color categories.

13.
J Theor Biol ; 425: 43-52, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28501635

RESUMO

Myeloproliferative neoplasm (MPN) is a hematologic malignancy characterized by the clonal outgrowth of hematopoietic cells with a somatically acquired mutation most commonly in JAK2 (JAK2V617F). This mutation endows upon myeloid progenitors cytokine independent growth and consequently leads to excessive production of myeloid lineage cells. It has been previously suggested that inflammation may play a role in the clonal evolution of JAK2V617F mutants. In particular, it is possible that one or more cellular kinetic parameters of hematopoietic stem cells (HSCs) are affected by inflammation, such as division or death rates of cells, and the probability of HSC differentiation. This suggests a mechanism that can steer the outcome of the cellular competition in favor of the mutants, initiating the disease. In this paper we create a number of mathematical evolutionary models, from very abstract to more concrete, that describe cellular competition in the context of inflammation. It is possible to build a model axiomatically, where only very general assumptions are imposed on the modeling components and no arbitrary (and generally unknown) functional forms are used, and still generate a set of testable predictions. In particular, we show that, if HSC death is negligible, the evolutionary advantage of mutant cells can only be conferred by an increase in differentiation probability of HSCs in the presence of inflammation, and if death plays a significant role in the dynamics, an additional mechanism may be an increase of HSC's division-to-death ratio in the presence of inflammation. Further, we show that in the presence of inflammation, the wild type cell population is predicted to shrink under inflammation (even in the absence of mutants). Finally, it turns out that if only the differentiation probability is affected by the inflammation, then the resulting steady state population of wild type cells will contain a relatively smaller percentage of HSCs under inflammation. If the division-to-death rate is also affected, then the percentage of HSCs under inflammation can either decrease or increase, depending on other parameters.


Assuntos
Neoplasias Hematológicas/genética , Inflamação/genética , Janus Quinase 2/genética , Mutação , Transtornos Mieloproliferativos/genética , Diferenciação Celular/genética , Divisão Celular/genética , Transformação Celular Neoplásica/genética , Neoplasias Hematológicas/patologia , Células-Tronco Hematopoéticas/patologia , Humanos , Inflamação/patologia , Modelos Biológicos , Transtornos Mieloproliferativos/patologia , Proteínas de Neoplasias/genética
14.
J Theor Biol ; 429: 190-203, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28669884

RESUMO

The question of stem cell control is at the center of our understanding of tissue functioning, both in healthy and cancerous conditions. It is well accepted that cellular fate decisions (such as divisions, differentiation, apoptosis) are orchestrated by a network of regulatory signals emitted by different cell populations in the lineage and the surrounding tissue. The exact regulatory network that governs stem cell lineages in a given tissue is usually unknown. Here we propose an algorithm to identify a set of candidate control networks that are compatible with (a) measured means and variances of cell populations in different compartments, (b) qualitative information on cell population dynamics, such as the existence of local controls and oscillatory reaction of the system to population size perturbations, and (c) statistics of correlations between cell numbers in different compartments. Using the example of human colon crypts, where lineages are comprised of stem cells, transit amplifying cells, and differentiated cells, we start with a theoretically known set of 32 smallest control networks compatible with tissue stability. Utilizing near-equilibrium stochastic calculus of stem cells developed earlier, we apply a series of tests, where we compare the networks' expected behavior with the observations. This allows us to exclude most of the networks, until only three, very similar, candidate networks remain, which are most compatible with the measurements. This work demonstrates how theoretical analysis of control networks combined with only static biological data can shed light onto the inner workings of stem cell lineages, in the absence of direct experimental assessment of regulatory signaling mechanisms. The resulting candidate networks are dominated by negative control loops and possess the following properties: (1) stem cell division decisions are negatively controlled by the stem cell population, (2) stem cell differentiation decisions are negatively controlled by the transit amplifying cell population.


Assuntos
Linhagem da Célula , Colo/citologia , Redes Reguladoras de Genes/fisiologia , Células-Tronco/citologia , Animais , Diferenciação Celular , Divisão Celular , Humanos , Modelos Biológicos
15.
PLoS Comput Biol ; 12(7): e1004990, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27427948

RESUMO

Homeostatic maintenance of tissues is orchestrated by well tuned networks of cellular signaling. Such networks regulate, in a stochastic manner, fates of all cells within the respective lineages. Processes such as symmetric and asymmetric divisions, differentiation, de-differentiation, and death have to be controlled in a dynamic fashion, such that the cell population is maintained at a stable equilibrium, has a sufficiently low level of stochastic variation, and is capable of responding efficiently to external damage. Cellular lineages in real tissues may consist of a number of different cell types, connected by hierarchical relationships, albeit not necessarily linear, and engaged in a number of different processes. Here we develop a general mathematical methodology for near equilibrium studies of arbitrarily complex hierarchical cell populations, under regulation by a control network. This methodology allows us to (1) determine stability properties of the network, (2) calculate the stochastic variance, and (3) predict how different control mechanisms affect stability and robustness of the system. We demonstrate the versatility of this tool by using the example of the airway epithelium lineage. Recent research shows that airway epithelium stem cells divide mostly asymmetrically, while the so-called secretory cells divide predominantly symmetrically. It further provides quantitative data on the recovery dynamics of the airway epithelium, which can include secretory cell de-differentiation. Using our new methodology, we demonstrate that while a number of regulatory networks can be compatible with the observed recovery behavior, the observed division patterns of cells are the most optimal from the viewpoint of homeostatic lineage stability and minimizing the variation of the cell population size. This not only explains the observed yet poorly understood features of airway tissue architecture, but also helps to deduce the information on the still largely hypothetical regulatory mechanisms governing tissue turnover, and lends insight into how different control loops influence the stability and variance properties of cell populations.


Assuntos
Células Epiteliais/citologia , Homeostase/fisiologia , Modelos Biológicos , Células-Tronco/citologia , Animais , Linhagem da Célula , Biologia Computacional , Camundongos , Transdução de Sinais , Processos Estocásticos
16.
Bull Math Biol ; 79(3): 635-661, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28194620

RESUMO

Continuing the discussion of how children can modify and regularize linguistic inputs from adults, we present a new interpretation of existing algorithms to model and investigate the process of a learner learning from an inconsistent source. On the basis of this approach is a (possibly nonlinear) function (the update function) that relates the current state of the learner with an increment that it receives upon processing the source's input, in a sequence of updates. The model can be considered a nonlinear generalization of the classic Bush-Mosteller algorithm. Our model allows us to analyze and present a theoretical explanation of a frequency boosting property, whereby the learner surpasses the fluency of the source by increasing the frequency of the most common input. We derive analytical expressions for the frequency of the learner, and also identify a class of update functions that exhibit frequency boosting. Applications to the Feature-Label-Order effect in learning are presented.


Assuntos
Desenvolvimento da Linguagem , Aprendizagem , Algoritmos , Simulação por Computador , Humanos , Cadeias de Markov , Conceitos Matemáticos , Modelos Psicológicos , Dinâmica não Linear , Língua de Sinais
17.
J Opt Soc Am A Opt Image Sci Vis ; 34(8): 1285-1300, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29036092

RESUMO

A new method is presented that identifies basic color terms (BCTs) from color-naming data. A function is defined that measures how well a term is understood by a communicating population. BCTs are then separated from other color terms by a threshold value applied to this function. A new mathematical algorithm is proposed and analyzed for determining the best exemplar associated with each BCT. Using data provided by the World Color Survey, comparisons are made between the paper's methods and those from other studies. These comparisons show that the paper's new definition of "basicness" mostly agrees with the typical definition found in the color categorization literature, which was originally due to Kay and colleagues. The new definition, unlike the typical one, has the advantage of not relying on syntactic or semantic features of languages or color lexicons. This permits the methodology developed to be generalizable and applied to other category domains for which a construct of "basicness" could have an important role.

18.
Proc Natl Acad Sci U S A ; 111 Suppl 3: 10789-95, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25024187

RESUMO

Complex traits arise from the interactions among multiple gene products. In the case where the complex phenotype is separated from the wild type by a fitness valley or a fitness plateau, the generation of a complex phenotype may take a very long evolutionary time. Interestingly, the rate of evolution depends in nontrivial ways on various properties of the underlying stochastic process, such as the spatial organization of the population and social interactions among cells. Here we review some of our recent work that investigates these phenomena in asexual populations. The role of spatial constraints is quite complex: there are realistic cases where spatial constrains can accelerate or delay evolution, or even influence it in a nonmonotonic fashion, where evolution works fastest for intermediate-range constraints. Social interactions among cells can be studied in the context of the division-of-labor games. Under a range of circumstances, cooperation among cells can lead to a relatively fast creation of a complex phenotype as an emerging (distributed) property. If we further assume the presence of cheaters, we observe the emergence of a fully mutated population of cells possessing the complex phenotype. Applications of these ideas to cancer initiation and biofilm formation in bacteria are discussed.


Assuntos
Comunicação Celular/genética , Evolução Molecular , Neoplasias/genética , Proteínas Supressoras de Tumor/genética , Divisão Celular/genética , Aptidão Genética , Homeostase/genética , Humanos , Modelos Genéticos , Mutação , Neoplasias/patologia , Fenótipo , Microambiente Tumoral/genética
19.
Proc Natl Acad Sci U S A ; 111(38): 13906-11, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25201956

RESUMO

The Bruton tyrosine kinase inhibitor (BTKi) ibrutinib is a new targeted therapy for patients with chronic lymphocytic leukemia (CLL). Ibrutinib is given orally on a continuous schedule and induces durable remissions in the majority of CLL patients. However, a small proportion of patients initially responds to the BTKi and then develops resistance. Estimating the frequency, timing, and individual risk of developing resistance to ibrutinib, therefore, would be valuable for long-term management of patients. Computational evolutionary models, based on measured kinetic parameters of patients, allow us to approach these questions and to develop a roadmap for personalized prognosis and treatment management. Our kinetic models predict that BTKi-resistant mutants exist before initiation of ibrutinib therapy, although they only comprise a minority of the overall tumor burden. Furthermore, we can estimate the time required for resistant cells to grow to detectable levels. We predict that this can be highly variable, depending mostly on growth and death rates of the individual CLL cell clone. For a specific patient, this time can be predicted with a high degree of certainty. Our model can thus be used to predict for how long ibrutinib can suppress the disease in individual patients. Furthermore, the model can suggest whether prior debulking of the tumor with chemo-immunotherapy can prolong progression-free survival under ibrutinib. Finally, by applying the models to data that document progression during ibrutinib therapy, we estimated that resistant mutants might have a small (<2%) mean fitness advantage in the absence of treatment, compared with sensitive cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Evolução Molecular , Leucemia Linfocítica Crônica de Células B , Modelos Biológicos , Mutação , Proteínas de Neoplasias , Proteínas Tirosina Quinases , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Piperidinas , Prognóstico , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo
20.
Blood ; 123(26): 4132-5, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24829205

RESUMO

The Bruton tyrosine kinase (BTK) inhibitor ibrutinib has excellent clinical activity in patients with chronic lymphocytic leukemia (CLL). Characteristically, ibrutinib causes CLL cell redistribution from tissue sites into the peripheral blood during the initial weeks of therapy. To better characterize the dynamics of this redistribution phenomenon, we correlated serial lymphocyte counts with volumetric changes in lymph node and spleen sizes during ibrutinib therapy. Kinetic parameters were estimated by applying a mathematical model to the data. We found that during ibrutinib therapy, 1.7% ± 1.1% of blood CLL cells and 2.7% ± 0.99% of tissue CLL cells die per day. The fraction of the tissue CLL cells that was redistributed into the blood during therapy was estimated to be 23.3% ± 17% of the total tissue disease burden. These data indicate that the reduction of tissue disease burden by ibrutinib is due more to CLL cell death and less to egress from nodal compartments.


Assuntos
Leucemia Linfocítica Crônica de Células B , Modelos Biológicos , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/enzimologia , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Piperidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA