Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988198

RESUMO

As a model plant for bryophytes, Marchantia polymorpha offers insights into the role of RNA silencing in aiding early land plants navigate the challenges posed by high-temperature environments. Genomic analysis revealed unique ARGONAUTE1 ortholog gene (MpAGO1) in M. polymorpha that is regulated by two species-specific microRNAs (miRNAs), miR11707.1 and miR11707.2. Comparative studies of small RNA profiles from M. polymorpha cellular and MpAGO1 immunoprecipitation (MpAGO1-IP) profiles at various temperatures, along with analyses of Arabidopsis AGO1 (AtAGO1), revealed that MpAGO1 has a low-selectivity for a diverse range of small RNA species than AtAGO1. Protein structural comparisons revealed no discernible differences in the MID domains of MpAGO1 and AtAGO1, suggesting the complexity of miRNA species specificity and necessitating further exploration. Small RNA profiling and size exclusion chromatography have pinpointed a subset of M. polymorpha miRNAs, notably miR11707, that remain in free form within the cell at 22°C but are loaded into MpAGO1 at 28°C to engage in RNA silencing. Investigations into the mir11707 gene editing (mir11707ge) mutants provided evidence of the regulation of miR11707 in MpAGO1. Notably, while MpAGO1 mRNA expression decreases at 28°C, the stability of the MpAGO1 protein and its associated miRNAs is essential for enhancing the RISC activity, revealing the importance of RNA silencing in enabling M. polymorpha to survive thermal stress. This study advances our understanding of RNA silencing in bryophytes and provides groundbreaking insights into the evolutionary resilience of land plants to climatic adversities.

2.
Plant Cell ; 33(7): 2395-2411, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33839776

RESUMO

KARRIKIN INSENSITIVE2 (KAI2) was first identified as a receptor of karrikins, smoke-derived germination stimulants. KAI2 is also considered a receptor of an unidentified endogenous molecule called the KAI2 ligand. Upon KAI2 activation, signals are transmitted through the degradation of D53/SMXL proteins via MAX2-dependent ubiquitination. Although components in the KAI2-dependent signaling pathway, namely MpKAI2A and MpKAI2B, MpMAX2, and MpSMXL, exist in the genome of the liverwort Marchantia polymorpha, their functions remain unknown. Here, we show that early thallus growth is retarded and gemma dormancy in the dark is suppressed in Mpkai2a and Mpmax2 loss-of-function mutants. These defects are counteracted in Mpkai2a Mpsmxl and Mpmax2 Mpsmxl double mutants indicating that MpKAI2A, MpMAX2, and MpSMXL act in the same genetic pathway. Introduction of MpSMXLd53, in which a domain required for degradation is mutated, into wild-type plants mimicks Mpkai2a and Mpmax2 plants. In addition, the detection of citrine fluorescence in Nicotiana benthamiana cells transiently expressing a SMXL-Citrine fusion protein requires treatment with MG132, a proteasome inhibitor. These findings imply that MpSMXL is subjected to degradation, and that the degradation of MpSMXL is crucial for MpKAI2A-dependent signaling in M. polymorpha. Therefore, we claim that the basic mechanisms in the KAI2-dependent signaling pathway are conserved in M. polymorpha.


Assuntos
Proteínas de Arabidopsis/metabolismo , Hidrolases/metabolismo , Marchantia/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Hidrolases/genética , Marchantia/genética , Transdução de Sinais/fisiologia
3.
Plant Cell Physiol ; 64(11): 1343-1355, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797211

RESUMO

Characterizing phenotypes is a fundamental aspect of biological sciences, although it can be challenging due to various factors. For instance, the liverwort Marchantia polymorpha is a model system for plant biology and exhibits morphological variability, making it difficult to identify and quantify distinct phenotypic features using objective measures. To address this issue, we utilized a deep-learning-based image classifier that can handle plant images directly without manual extraction of phenotypic features and analyzed pictures of M. polymorpha. This dioicous plant species exhibits morphological differences between male and female wild accessions at an early stage of gemmaling growth, although it remains elusive whether the differences are attributable to sex chromosomes. To isolate the effects of sex chromosomes from autosomal polymorphisms, we established a male and female set of recombinant inbred lines (RILs) from a set of male and female wild accessions. We then trained deep learning models to classify the sexes of the RILs and the wild accessions. Our results showed that the trained classifiers accurately classified male and female gemmalings of wild accessions in the first week of growth, confirming the intuition of researchers in a reproducible and objective manner. In contrast, the RILs were less distinguishable, indicating that the differences between the parental wild accessions arose from autosomal variations. Furthermore, we validated our trained models by an 'eXplainable AI' technique that highlights image regions relevant to the classification. Our findings demonstrate that the classifier-based approach provides a powerful tool for analyzing plant species that lack standardized phenotyping metrics.


Assuntos
Aprendizado Profundo , Marchantia , Marchantia/genética
4.
New Phytol ; 230(3): 1003-1016, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33474738

RESUMO

Strigolactones and karrikins are butenolide molecules that regulate plant growth. They are perceived by the α/ß-hydrolase DWARF14 (D14) and its homologue KARRIKIN INSENSITIVE2 (KAI2), respectively. Plant-derived strigolactones have a butenolide ring with a methyl group that is essential for bioactivity. By contrast, karrikins are abiotic in origin, and the butenolide methyl group is nonessential. KAI2 is probably a receptor for an endogenous butenolide, but the identity of this compound remains unknown. Here we characterise the specificity of KAI2 towards differing butenolide ligands using genetic and biochemical approaches. We find that KAI2 proteins from multiple species are most sensitive to desmethyl butenolides that lack a methyl group. Desmethyl-GR24 and desmethyl-CN-debranone are active by KAI2 but not D14. They are more potent KAI2 agonists compared with their methyl-substituted reference compounds both in vitro and in plants. The preference of KAI2 for desmethyl butenolides is conserved in Selaginella moellendorffii and Marchantia polymorpha, suggesting that it is an ancient trait in land plant evolution. Our findings provide insight into the mechanistic basis for differential ligand perception by KAI2 and D14, and support the view that the endogenous substrates for KAI2 and D14 have distinct chemical structures and biosynthetic origins.


Assuntos
Proteínas de Arabidopsis , Lactonas , 4-Butirolactona/análogos & derivados , Proteínas de Arabidopsis/genética , Hidrolases , Ligantes , Reguladores de Crescimento de Plantas
5.
Proc Natl Acad Sci U S A ; 113(37): 10424-9, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27578868

RESUMO

In green plants, the blue light receptor kinase phototropin mediates various photomovements and developmental responses, such as phototropism, chloroplast photorelocation movements (accumulation and avoidance), stomatal opening, and leaf flattening, which facilitate photosynthesis. In Arabidopsis, two phototropins (phot1 and phot2) redundantly mediate these responses. Two phototropin-interacting proteins, NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2), which belong to the NPH3/RPT2-like (NRL) family of BTB (broad complex, tramtrack, and bric à brac) domain proteins, mediate phototropism and leaf flattening. However, the roles of NRL proteins in chloroplast photorelocation movement remain to be determined. Here, we show that another phototropin-interacting NRL protein, NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1), and RPT2 redundantly mediate the chloroplast accumulation response but not the avoidance response. NPH3, RPT2, and NCH1 are not involved in the chloroplast avoidance response or stomatal opening. In the liverwort Marchantia polymorpha, the NCH1 ortholog, MpNCH1, is essential for the chloroplast accumulation response but not the avoidance response, indicating that the regulation of the phototropin-mediated chloroplast accumulation response by RPT2/NCH1 is conserved in land plants. Thus, the NRL protein combination could determine the specificity of diverse phototropin-mediated responses.


Assuntos
Proteínas de Arabidopsis/genética , Fototropismo/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Cloroplastos/genética , Embriófitas/crescimento & desenvolvimento , Embriófitas/metabolismo , Luz , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fotossíntese/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases
6.
Plant Physiol ; 166(1): 411-27, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25096976

RESUMO

Blue-light-induced chloroplast photorelocation movement is observed in most land plants. Chloroplasts move toward weak-light-irradiated areas to efficiently absorb light (the accumulation response) and escape from strong-light-irradiated areas to avoid photodamage (the avoidance response). The plant-specific kinase phototropin (phot) is the blue-light receptor for chloroplast movements. Although the molecular mechanisms for chloroplast photorelocation movement have been analyzed, the overall aspects of signal transduction common to land plants are still unknown. Here, we show that the liverwort Marchantia polymorpha exhibits the accumulation and avoidance responses exclusively induced by blue light as well as specific chloroplast positioning in the dark. Moreover, in silico and Southern-blot analyses revealed that the M. polymorpha genome encodes a single PHOT gene, MpPHOT, and its knockout line displayed none of the chloroplast photorelocation movements, indicating that the sole MpPHOT gene mediates all types of movement. Mpphot was localized on the plasma membrane and exhibited blue-light-dependent autophosphorylation both in vitro and in vivo. Heterologous expression of MpPHOT rescued the defects in chloroplast movement of phot mutants in the fern Adiantum capillus-veneris and the seed plant Arabidopsis (Arabidopsis thaliana). These results indicate that Mpphot possesses evolutionarily conserved regulatory activities for chloroplast photorelocation movement. M. polymorpha offers a simple and versatile platform for analyzing the fundamental processes of phototropin-mediated chloroplast photorelocation movement common to land plants.


Assuntos
Cloroplastos/efeitos da radiação , Marchantia/efeitos da radiação , Fototropinas/metabolismo , Adiantum/metabolismo , Adiantum/efeitos da radiação , Sequência de Aminoácidos , Membrana Celular/metabolismo , Cor , Teste de Complementação Genética , Marchantia/genética , Marchantia/metabolismo , Dados de Sequência Molecular , Fosforilação , Fototropinas/genética , Plantas Geneticamente Modificadas/efeitos da radiação
7.
Curr Biol ; 33(7): 1196-1210.e4, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36863344

RESUMO

In vegetative reproduction of Marchantia polymorpha (M. polymorpha), propagules, called gemmae, are formed in gemma cups. Despite its significance for survival, control of gemma and gemma cup formation by environmental cues is not well understood. We show here that the number of gemmae formed in a gemma cup is a genetic trait. Gemma formation starts from the central region of the floor of the gemma cup, proceeds to the periphery, and terminates when the appropriate number of gemmae is initiated. The MpKARRIKIN INSENSITIVE2 (MpKAI2)-dependent signaling pathway promotes gemma cup formation and gemma initiation. The number of gemmae in a cup is controlled by modulating the ON/OFF switch of the KAI2-dependent signaling. Termination of the signaling results in the accumulation of MpSMXL, a suppressor protein. In the Mpsmxl mutants, gemma initiation continues, leading to the formation of a highly increased number of gemmae in a cup. Consistent with its function, the MpKAI2-dependent signaling pathway is active in gemma cups where gemmae initiate, as well as in the notch region of the mature gemma and midrib of the ventral side of the thallus. In this work, we also show that GEMMA CUP-ASSOCIATED MYB1 works downstream of this signaling pathway to promote gemma cup formation and gemma initiation. We also found that the availability of potassium affects gemma cup formation independently from the KAI2-dependent signaling pathway in M. polymorpha. We propose that the KAI2-dependent signaling pathway functions to optimize vegetative reproduction by adapting to the environment in M. polymorpha.


Assuntos
Marchantia , Marchantia/genética , Ligantes , Transdução de Sinais , Reprodução , Proteínas de Plantas/metabolismo
8.
Curr Biol ; 33(16): 3505-3513.e5, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480853

RESUMO

Karrikins are smoke-derived butenolides that induce seed germination and photomorphogenesis in a wide range of plants.1,2,3 KARRIKIN INSENSITIVE2 (KAI2), a paralog of a strigolactone receptor, perceives karrikins or their metabolized products in Arabidopsis thaliana.4,5,6,7 Furthermore, KAI2 is thought to perceive an unidentified plant hormone, called KAI2 ligand (KL).8,9 KL signal is transduced via the interaction between KAI2, MORE AXILLARY GROWTH2 (MAX2), and SUPPRESSOR of MORE AXILLARY GROWTH2 1 LIKE family proteins (SMXLs), followed by the degradation of SMXLs.4,7,10,11,12,13,14 This signaling pathway is conserved both in A. thaliana and the bryophyte Marchantia polymorpha.14 Although the KL signaling pathway is well characterized, the KL metabolism pathways remain poorly understood. Here, we show that DIENELACTONE HYDROLASE LIKE PROTEIN1 (DLP1) is a negative regulator of the KL pathway in M. polymorpha. The KL signal induces DLP1 expression. DLP1 overexpression lines phenocopied the Mpkai2a and Mpmax2 mutants, while dlp1 mutants phenocopied the Mpsmxl mutants. Mutations in the KL signaling genes largely suppressed these phenotypes, indicating that DLP1 acts upstream of the KL signaling pathway, although DLP1 also has KL pathway-independent functions. DLP1 exhibited enzymatic activity toward a potential substrate, suggesting the possibility that DLP1 works through KL inactivation. Investigation of DLP1 homologs in A. thaliana revealed that they do not play a major role in the KL pathway, suggesting different mechanisms for the KL signal regulation. Our findings provide new insights into the regulation of the KL signal in M. polymorpha and the evolution of the KL pathway in land plants.


Assuntos
Arabidopsis , Marchantia , Arabidopsis/genética , Ligantes , Marchantia/genética
9.
Nat Commun ; 13(1): 3974, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803942

RESUMO

In flowering plants, strigolactones (SLs) have dual functions as hormones that regulate growth and development, and as rhizosphere signaling molecules that induce symbiosis with arbuscular mycorrhizal (AM) fungi. Here, we report the identification of bryosymbiol (BSB), an SL from the bryophyte Marchantia paleacea. BSB is also found in vascular plants, indicating its origin in the common ancestor of land plants. BSB synthesis is enhanced at AM symbiosis permissive conditions and BSB deficient mutants are impaired in AM symbiosis. In contrast, the absence of BSB synthesis has little effect on the growth and gene expression. We show that the introduction of the SL receptor of Arabidopsis renders M. paleacea cells BSB-responsive. These results suggest that BSB is not perceived by M. paleacea cells due to the lack of cognate SL receptors. We propose that SLs originated as AM symbiosis-inducing rhizosphere signaling molecules and were later recruited as plant hormone.


Assuntos
Arabidopsis , Micorrizas , Arabidopsis/genética , Arabidopsis/metabolismo , Compostos Heterocíclicos com 3 Anéis , Lactonas/metabolismo , Micorrizas/genética , Micorrizas/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Simbiose
10.
BMC Biochem ; 11: 6, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20109180

RESUMO

BACKGROUND: Plant latex is the cytoplasm of highly specialized cells known as laticifers, and is thought to have a critical role in defense against herbivorous insects. Proteins abundantly accumulated in latex might therefore be involved in the defense system. RESULTS: We purified latex abundant protein a and b (LA-a and LA-b) from mulberry (Morus sp.) and analyzed their properties. LA-a and LA-b have molecular masses of approximately 50 and 46 kDa, respectively, and are abundant in the soluble fraction of latex. Western blotting analysis suggested that they share sequence similarity with each other. The sequences of LA-a and LA-b, as determined by Edman degradation, showed chitin-binding domains of plant chitinases at the N termini. These proteins showed small but significant chitinase and chitosanase activities. Lectin RCA120 indicated that, unlike common plant chitinases, LA-a and LA-b are glycosylated. LA-a and LA-b showed insecticidal activities when fed to larvae of the model insect Drosophila melanogaster. CONCLUSIONS: Our results suggest that the two LA proteins have a crucial role in defense against herbivorous insects, possibly by hydrolyzing their chitin.


Assuntos
Inseticidas/farmacologia , Látex/metabolismo , Morus/metabolismo , Proteínas de Plantas/farmacologia , Sequência de Aminoácidos , Animais , Drosophila melanogaster/efeitos dos fármacos , Glicosilação , Inseticidas/isolamento & purificação , Inseticidas/metabolismo , Larva/efeitos dos fármacos , Dados de Sequência Molecular , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo
11.
Methods Mol Biol ; 1924: 53-61, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30694467

RESUMO

The liverwort species, Marchantia polymorpha, shows environment-dependent morphological plasticity throughout its life cycle. Thalli, representing the predominant body form throughout most of this bryophyte's life cycle, grow with repeated dichotomous branching at the apex and develop horizontally under sufficient light intensity. Spores, after germination, produce a mass of cells, called sporelings, which then grow into thalli. Both thalli and sporelings, if grown under weak light conditions, form narrow shapes, and their apices grow toward the light source. These phototropic responses are specific to blue light and dependent on the blue-light receptor phototropin. This chapter provides several basic procedures, along with some tips, for designing and performing experiments with M. polymorpha to observe their phototropic responses, as well as methods for observing the localization of the phototropin "Mpphot" with a fluorescent protein tag.


Assuntos
Luz , Marchantia/efeitos da radiação , Plantas Geneticamente Modificadas/efeitos da radiação , Transformação Genética/efeitos da radiação , Marchantia/genética , Plantas Geneticamente Modificadas/genética , Transformação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA