Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Astrobiology ; 24(4): 423-441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563825

RESUMO

The possible existence of a microbial community in the venusian clouds is one of the most intriguing hypotheses in modern astrobiology. Such a community must be characterized by a high survivability potential under severe environmental conditions, the most extreme of which are very low pH levels and water activity. Considering different scenarios for the origin of life and geological history of our planet, a few of these scenarios are discussed in the context of the origin of hypothetical microbial life within the venusian cloud layer. The existence of liquid water on the surface of ancient Venus is one of the key outstanding questions influencing this possibility. We link the inherent attributes of microbial life as we know it that favor the persistence of life in such an environment and review the possible scenarios of life's origin and its evolution under a strong greenhouse effect and loss of water on Venus. We also propose a roadmap and describe a novel methodological approach for astrobiological research in the framework of future missions to Venus with the intent to reveal whether life exists today on the planet.


Assuntos
Vênus , Planetas , Exobiologia , Água/química
2.
Life (Basel) ; 12(11)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36431065

RESUMO

The article shows the compatibility of the concept of thermodynamic inversion (TI) of the origin of life with the theory of stress in (micro)biology. According to the proposed TI concept, the first microorganisms on Earth were formed through an effective (intensified and purposeful) response of organic microsystems to incessant oscillations of physicochemical parameters (i.e., to periodic stress) in a hydrothermal environment. This approach allows us to explain the ability of contemporary microorganisms to respond to stress at the individual and population levels. The ability of microorganisms to effectively react to environmental stress factors is corroborated by a number of molecular and other mechanisms that are described in the article.

3.
Astrobiology ; 21(10): 1163-1185, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33970019

RESUMO

We present a case for the exploration of Venus as an astrobiology target-(1) investigations focused on the likelihood that liquid water existed on the surface in the past, leading to the potential for the origin and evolution of life, (2) investigations into the potential for habitable zones within Venus' present-day clouds and Venus-like exo atmospheres, (3) theoretical investigations into how active aerobiology may impact the radiative energy balance of Venus' clouds and Venus-like atmospheres, and (4) application of these investigative approaches toward better understanding the atmospheric dynamics and habitability of exoplanets. The proximity of Venus to Earth, guidance for exoplanet habitability investigations, and access to the potential cloud habitable layer and surface for prolonged in situ extended measurements together make the planet a very attractive target for near term astrobiological exploration.


Assuntos
Meio Ambiente Extraterreno , Vênus , Planeta Terra , Exobiologia , Planetas
4.
Life (Basel) ; 9(2)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100955

RESUMO

This article is a brief review of research in the Kamchatka geothermal region initiated by David Deamer and the author in 1999. Results obtained over the last 20 years are described, including a seminal experiment in which biologically important organic compounds were dispersed in a hot spring to determine their fate. Other investigations include ionic and organic composition of hydrothermal water, the source of hydrothermally generated oil, and pressure-temperature oscillations in hydrothermal systems. The relation of these results to research on the origin of life is discussed.

5.
Astrobiology ; 19(12): 1523-1537, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31596608

RESUMO

Two processes required for life's origin are condensation reactions that produce essential biopolymers by a nonenzymatic reaction, and self-assembly of membranous compartments that encapsulate the polymers into populations of protocells. Because life today thrives not just in the temperate ocean and lakes but also in extreme conditions of temperature, salinity, and pH, there is a general assumption that any form of liquid water would be sufficient to support the origin of life as long as there are sources of chemical energy and simple organic compounds. We argue here that the first forms of life would be physically and chemically fragile and would be strongly affected by ionic solutes and pH. A hypothesis emerges from this statement that hot springs associated with volcanic land masses have an ionic composition more conducive to self-assembly and polymerization than seawater. Here we have compared the ionic solutes of seawater with those of terrestrial hot springs. We then describe preliminary experimental results that show how the hypothesis can be tested in a prebiotic analog environment.


Assuntos
Fontes Termais/química , Modelos Teóricos , Compostos Orgânicos/química , Origem da Vida , Água do Mar/química , Simulação por Computador , Planeta Terra , Exobiologia/métodos , Temperatura Alta , Concentração de Íons de Hidrogênio , Íons/química , Polimerização , Polímeros/química
6.
Front Biosci (Elite Ed) ; 6(1): 208-24, 2014 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-24389154

RESUMO

Biological organization arises under thermodynamic inversion in prebiotic systems that provide the prevalence of free energy and information contribution over the entropy contribution. The inversion might occur under specific far-from-equilibrium conditions in prebiotic systems oscillating around the bifurcation point. At the inversion moment, (physical) information characteristic of non-biological systems acquires the new features: functionality, purposefulness, and control over the life processes, which transform it into biological information. Random sequences of amino acids and nucleotides, spontaneously synthesized in the prebiotic microsystem, in the primary living unit (probiont) re-assemble into functional sequences, involved into bioinformation circulation through nucleoprotein interaction, resulted in the genetic code emergence. According to the proposed concept, oscillating three-dimensional prebiotic microsystems transformed into probionts in the changeable hydrothermal medium of the early Earth. The inversion concept states that spontaneous (accidental, random) transformations in prebiotic systems cannot produce life; it is only non-spontaneous (perspective, purposeful) transformations, which are the result of thermodynamic inversion, that lead to the negentropy conversion of prebiotic systems into initial living units.


Assuntos
Evolução Biológica , Teoria da Informação , Modelos Biológicos , Origem da Vida , Biologia de Sistemas/métodos , Termodinâmica , Entropia
7.
Philos Trans R Soc Lond B Biol Sci ; 361(1474): 1809-18, 2006 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-17008220

RESUMO

An important question guiding research on the origin of life concerns the environmental conditions where molecular systems with the properties of life first appeared on the early Earth. An appropriate site would require liquid water, a source of organic compounds, a source of energy to drive polymerization reactions and a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. One such site is a geothermal setting, in which organic compounds interact with mineral surfaces to promote self-assembly and polymerization reactions. Here, we report an initial study of two geothermal sites where mixtures of representative organic solutes (amino acids, nucleobases, a fatty acid and glycerol) and phosphate were mixed with high-temperature water in clay-lined pools. Most of the added organics and phosphate were removed from solution with half-times measured in minutes to a few hours. Analysis of the clay, primarily smectite and kaolin, showed that the organics were adsorbed to the mineral surfaces at the acidic pH of the pools, but could subsequently be released in basic solutions. These results help to constrain the range of possible environments for the origin of life. A site conducive to self-assembly of organic solutes would be an aqueous environment relatively low in ionic solutes, at an intermediate temperature range and neutral pH ranges, in which cyclic concentration of the solutes can occur by transient dry intervals.


Assuntos
Planeta Terra , Evolução Química , Origem da Vida , Fontes Termais/química , Compostos Orgânicos/análise , Compostos Orgânicos/química , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA