Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
EMBO J ; 34(22): 2840-61, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26471730

RESUMO

Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser(65)) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser(111)) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser(111) of each of the Rabs, we demonstrate that Rab Ser(111) phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient-derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser(111) phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser(111) phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser(65). We further show mechanistically that phosphorylation at Ser(111) significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser(111) may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase-mediated signalling may represent a major mechanism in the neurodegenerative cascade of Parkinson's disease.


Assuntos
Proteínas Oncogênicas/metabolismo , Transtornos Parkinsonianos/metabolismo , Proteínas Quinases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Ativação Enzimática/genética , Quinases do Centro Germinativo , Células HEK293 , Células HeLa , Humanos , Mutação de Sentido Incorreto , Proteínas Oncogênicas/genética , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Fosforilação/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas rab de Ligação ao GTP/genética
2.
Biochem J ; 460(1): 127-39, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24660806

RESUMO

We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho-Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (ΔUbl-Parkin) is robustly activated by ubiquitinPhospho-Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho-Ser65) can also activate ΔUbl-Parkin similarly to ubiquitinPhospho-Ser65. Thirdly, we establish that ubiquitinPhospho-Ser65, but not non-phosphorylated ubiquitin or UblPhospho-Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65. We propose that phosphorylation of Parkin at Ser65 serves to prime the E3 ligase enzyme for activation by ubiquitinPhospho-Ser65, suggesting that small molecules that mimic ubiquitinPhospho-Ser65 could hold promise as novel therapies for Parkinson's disease.


Assuntos
Proteínas Quinases/genética , Serina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Células HEK293 , Humanos , Dados de Sequência Molecular , Fosforilação/genética , Proteínas Quinases/fisiologia , Serina/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
3.
Nat Commun ; 13(1): 4444, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915085

RESUMO

During the early stages of Alzheimer's disease (AD) in both mouse models and human patients, soluble forms of Amyloid-ß 1-42 oligomers (Aß42o) trigger loss of excitatory synapses (synaptotoxicity) in cortical and hippocampal pyramidal neurons (PNs) prior to the formation of insoluble amyloid plaques. In a transgenic AD mouse model, we observed a spatially restricted structural remodeling of mitochondria in the apical tufts of CA1 PNs dendrites corresponding to the dendritic domain where the earliest synaptic loss is detected in vivo. We also observed AMPK over-activation as well as increased fragmentation and loss of mitochondrial biomass in Ngn2-induced neurons derived from a new APPSwe/Swe knockin human ES cell line. We demonstrate that Aß42o-dependent over-activation of the CAMKK2-AMPK kinase dyad mediates synaptic loss through coordinated phosphorylation of MFF-dependent mitochondrial fission and ULK2-dependent mitophagy. Our results uncover a unifying stress-response pathway causally linking Aß42o-dependent structural remodeling of dendritic mitochondria to synaptic loss.


Assuntos
Doença de Alzheimer , Mitofagia , Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Dinâmica Mitocondrial , Fragmentos de Peptídeos , Sinapses/metabolismo
4.
J Biol Chem ; 284(40): 27135-45, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19648115

RESUMO

Receptor guanylyl cyclases are multidomain proteins, and ligand binding to the extracellular domain increases the levels of intracellular cGMP. The intracellular domain of these receptors is composed of a kinase homology domain (KHD), a linker of approximately 70 amino acids, followed by the C-terminal guanylyl cyclase domain. Mechanisms by which these receptors are allosterically regulated by ligand binding to the extracellular domain and ATP binding to the KHD are not completely understood. Here we examine the role of the linker region in receptor guanylyl cyclases by a series of point mutations in receptor guanylyl cyclase C. The linker region is predicted to adopt a coiled coil structure and aid in dimerization, but we find that the effects of mutations neither follow a pattern predicted for a coiled coil peptide nor abrogate dimerization. Importantly, this region is critical for repressing the guanylyl cyclase activity of the receptor in the absence of ligand and permitting ligand-mediated activation of the cyclase domain. Mutant receptors with high basal guanylyl cyclase activity show no further activation in the presence of non-ionic detergents, suggesting that hydrophobic interactions in the basal and inactive conformation of the guanylyl cyclase domain are disrupted by mutation. Equivalent mutations in the linker region of guanylyl cyclase A also elevated the basal activity and abolished ligand- and detergent-mediated activation. We, therefore, have defined a key regulatory role for the linker region of receptor guanylyl cyclases which serves as a transducer of information from the extracellular domain via the KHD to the catalytic domain.


Assuntos
Guanilato Ciclase/química , Guanilato Ciclase/metabolismo , Mutação Puntual , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Detergentes/farmacologia , Ativação Enzimática/efeitos dos fármacos , Guanilato Ciclase/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de Proteína , Ratos , Receptores de Enterotoxina , Receptores Acoplados a Guanilato Ciclase , Receptores de Peptídeos/genética
5.
Open Biol ; 2(5): 120080, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22724072

RESUMO

Missense mutations in PTEN-induced kinase 1 (PINK1) cause autosomal-recessive inherited Parkinson's disease (PD). We have exploited our recent discovery that recombinant insect PINK1 is catalytically active to test whether PINK1 directly phosphorylates 15 proteins encoded by PD-associated genes as well as proteins reported to bind PINK1. We have discovered that insect PINK1 efficiently phosphorylates only one of these proteins, namely the E3 ligase Parkin. We have mapped the phosphorylation site to a highly conserved residue within the Ubl domain of Parkin at Ser(65). We show that human PINK1 is specifically activated by mitochondrial membrane potential (Δψm) depolarization, enabling it to phosphorylate Parkin at Ser(65). We further show that phosphorylation of Parkin at Ser(65) leads to marked activation of its E3 ligase activity that is prevented by mutation of Ser(65) or inactivation of PINK1. We provide evidence that once activated, PINK1 autophosphorylates at several residues, including Thr(257), which is accompanied by an electrophoretic mobility band-shift. These results provide the first evidence that PINK1 is activated following Δψm depolarization and suggest that PINK1 directly phosphorylates and activates Parkin. Our findings indicate that monitoring phosphorylation of Parkin at Ser(65) and/or PINK1 at Thr(257) represent the first biomarkers for examining activity of the PINK1-Parkin signalling pathway in vivo. Our findings also suggest that small molecule activators of Parkin that mimic the effect of PINK1 phosphorylation may confer therapeutic benefit for PD.


Assuntos
Potencial da Membrana Mitocondrial/fisiologia , Proteínas Quinases/fisiologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , Doença de Parkinson/metabolismo , Fosforilação/efeitos dos fármacos , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Proteínas Quinases/genética , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/farmacologia , Proteínas Recombinantes de Fusão/fisiologia , Tribolium/enzimologia , Tribolium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA