Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Am Soc Nephrol ; 29(7): 1849-1858, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29654216

RESUMO

Background For many patients with kidney failure, the cause and underlying defect remain unknown. Here, we describe a novel mechanism of a genetic order characterized by renal Fanconi syndrome and kidney failure.Methods We clinically and genetically characterized members of five families with autosomal dominant renal Fanconi syndrome and kidney failure. We performed genome-wide linkage analysis, sequencing, and expression studies in kidney biopsy specimens and renal cells along with knockout mouse studies and evaluations of mitochondrial morphology and function. Structural studies examined the effects of recognized mutations.Results The renal disease in these patients resulted from monoallelic mutations in the gene encoding glycine amidinotransferase (GATM), a renal proximal tubular enzyme in the creatine biosynthetic pathway that is otherwise associated with a recessive disorder of creatine deficiency. In silico analysis showed that the particular GATM mutations, identified in 28 members of the five families, create an additional interaction interface within the GATM protein and likely cause the linear aggregation of GATM observed in patient biopsy specimens and cultured proximal tubule cells. GATM aggregates-containing mitochondria were elongated and associated with increased ROS production, activation of the NLRP3 inflammasome, enhanced expression of the profibrotic cytokine IL-18, and increased cell death.Conclusions In this novel genetic disorder, fully penetrant heterozygous missense mutations in GATM trigger intramitochondrial fibrillary deposition of GATM and lead to elongated and abnormal mitochondria. We speculate that this renal proximal tubular mitochondrial pathology initiates a response from the inflammasome, with subsequent development of kidney fibrosis.


Assuntos
Amidinotransferases/genética , Síndrome de Fanconi/genética , Falência Renal Crônica/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Idoso , Amidinotransferases/metabolismo , Animais , Simulação por Computador , Síndrome de Fanconi/complicações , Síndrome de Fanconi/metabolismo , Síndrome de Fanconi/patologia , Feminino , Heterozigoto , Humanos , Lactente , Inflamassomos/metabolismo , Falência Renal Crônica/etiologia , Falência Renal Crônica/metabolismo , Falência Renal Crônica/patologia , Masculino , Camundongos , Camundongos Knockout , Conformação Molecular , Mutação , Mutação de Sentido Incorreto , Linhagem , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de DNA , Adulto Jovem
2.
Hum Mutat ; 21(4): 333-44, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12655543

RESUMO

PAHdb, a legacy of and resource in genetics, is a relational locus-specific database (http://www.pahdb.mcgill.ca). It records and annotates both pathogenic alleles (n = 439, putative disease-causing) and benign alleles (n = 41, putative untranslated polymorphisms) at the human phenylalanine hydroxylase locus (symbol PAH). Human alleles named by nucleotide number (systematic names) and their trivial names receive unique identifier numbers. The annotated gDNA sequence for PAH is typical for mammalian genes. An annotated gDNA sequence is numbered so that cDNA and gDNA sites are interconvertable. A site map for PAHdb leads to a large array of secondary data (attributes): source of the allele (submitter, publication, or population); polymorphic haplotype background; and effect of the allele as predicted by molecular modeling on the phenylalanine hydroxylase enzyme (EC 1.14.16.1) or by in vitro expression analysis. The majority (63%) of the putative pathogenic PAH alleles are point mutations causing missense in translation of which few have a primary effect on PAH enzyme kinetics. Most apparently have a secondary effect on its function through misfolding, aggregation, and intracellular degradation of the protein. Some point mutations create new splice sites. A subset of primary PAH mutations that are tetrahydrobiopterin-responsive is highlighted on a Curators' Page. A clinical module describes the corresponding human clinical disorders (hyperphenylalaninemia [HPA] and phenylketonuria [PKU]), their inheritance, and their treatment. PAHdb contains data on the mouse gene (Pah) and on four orthologous mutant mouse models and their use (for example, in research on oral treatment of PKU with the enzyme phenylalanine ammonia lyase [EC 4.3.1.5]).


Assuntos
Bases de Dados Genéticas/tendências , Marcadores Genéticos , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença/genética , Humanos , Internet , Fenilcetonúrias/enzimologia , Fenilcetonúrias/etiologia
4.
Arch Dermatol ; 147(9): 1077-80, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21576551

RESUMO

BACKGROUND: Pachyonychia congenita (PC) is a genodermatosis caused by mutations in 1 of 4 known keratin genes, including KRT6A, KRT6B, KRT16, or KRT17. The most common mode of inheritance is autosomal dominant. Families with an affected parent are routinely counseled about the 50% transmission risk to each offspring. In some cases, families with a rare disorder like PC can initially present with an affected child while both parents are unaffected. This is usually the result of a spontaneous in utero mutation, and the risk of subsequent offspring being affected with the same condition is negligible (but may be increased above the general population's risk, although the exact risk is not currently known for PC). OBSERVATIONS: We discuss a case of 2 affected children born to unaffected parents. We performed mutational analyses of all 4 individuals in the family on DNA extracted from lymphocytes. Owing to the unusual presentation of 2 affected siblings, we also extracted DNA from the father's sperm cells for keratin gene mutational analysis. We describe the first case, to our knowledge, of germ cell mosaicism in PC. CONCLUSION: Counseling of unaffected parents with a first child diagnosed as having PC should entail a discussion of the possibility of germ cell mosaicism contributing to an increased risk of having subsequent affected children.


Assuntos
Análise Mutacional de DNA , Mutação em Linhagem Germinativa , Queratinas/genética , Mosaicismo , Paquioníquia Congênita/genética , Feminino , Humanos , Lactente , Masculino , Paquioníquia Congênita/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA