Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37691165

RESUMO

A continuous downstream process of monoclonal antibody was developed based on the process characterization. Periodic-counter current chromatography (PCCC) with two protein A columns was used for the capture step. For low pH virus inactivation (VI), a batch reactor was employed, which can work as a surge (buffer) tank. Flow-through chromatography (FTC) with two connected columns of different separation modes (anion-mixed mode and cation exchange) was designed as a polish step. After 24 h PCCC run, the collected pool was processed for VI. After adjusting pH and electric conductivity, the solution was fed to the two connected FTC columns for 24 h. Virus filter was also connected to the exit of the connected-column. PCCC and FTC were run in parallel. Six runs of different feed rates (0.5-10 L/day) and feed concentrations (1-3.2 g/L) were performed with protein A columns of 1-5 mL and FTC columns of 3-10 mL. The largest run (feed rate 10 L/day, feed concentration 2 g/L) was carried out at a GMP facility with 15 mL protein A columns and 100 mL FTC columns. Good recovery and purity values were obtained for all runs. The process was found to be flexible and stable for feed fluctuations. Only three surge or pool tanks were needed in addition to the final product pool tank.

2.
Biotechnol Bioeng ; 120(10): 2977-2988, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37288613

RESUMO

There are few reports of the adoption of continuous processes in bioproduction, particularly the implementation of end-to-end continuous or integrated processes, due to difficulties such as feed adjustment and incorporating virus filtration. Here, we propose an end-to-end integrated continuous process for a monoclonal antibody (mAb) with three integrated process segments: upstream production processes with pool-less direct connection, pooled low pH virus inactivation with pH control and a total flow-through integrated polishing process in which two columns were directly connected with a virus filter. The pooled virus inactivation step defines the batch, and high impurities reduction and mAb recovery were achieved for batches conducted in succession. Viral clearance tests also confirmed robust virus reduction for the flow-through two-column chromatography and the virus filtration steps. Additionally, viral clearance tests with two different hollow fiber virus filters operated at flux ranging from 1.5 to 40 LMH (liters per effective surface area of filter in square meters per hour) confirmed robust virus reduction over these ranges. Complete clearance with virus logarithmic reduction value ≥4 was achieved even with a process pause at the lowest flux. The end-to-end integrated continuous process proposed in this study is amenable to production processes, and the investigated virus filters have excellent applicability to continuous processes conducted at constant flux.


Assuntos
Anticorpos Monoclonais , Vírus , Anticorpos Monoclonais/química , Filtração/métodos , Cromatografia , Inativação de Vírus
3.
J Chromatogr A ; 1658: 462604, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34695664

RESUMO

Although empirical methods have been introduced in the process development of continuous chromatography, the common approach to optimize a multi-column continuous capture chromatography (periodic counter-current chromatography, PCCC) process heavily relies on numerical model simulations and the number of experiments. In addition, different multi-column settings in PCCC add more design variables in process development. In this study, we have developed a rational method for designing PCCC processes based on iterative calculations by mechanistic model-based simulations. Breakthrough curves of a monoclonal antibody were measured at different residence times for three protein A resins of different particle sizes and capacities to obtain the parameters needed for the simulation. Numerical calculations were performed for the protein sample concentration in the range of 1.5 to 4 g/L. Regression curves were developed to describe the relative process performances compared with batch operation, including the resin capacity utilization and the buffer consumption. Another linear correlation was established between breakthrough cut-off (BT%) and a modified group composed of residence time, mass transfer coefficient, and particle size. By normalizing BT% with binding capacity and switching time, the linear regression curves were established for the three protein A resins, which are useful for the design and optimization of PCCC to reduce the process development time.


Assuntos
Anticorpos Monoclonais , Proteína Estafilocócica A , Cromatografia de Afinidade , Modelos Lineares , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA