Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Can J Microbiol ; 67(4): 332-341, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33136441

RESUMO

Hot Lake is a small heliothermal and hypersaline lake in far north-central Washington State (USA) and is limnologically unusual because MgSO4 rather than NaCl is the dominant salt. In late summer, the Hot Lake metalimnion becomes distinctly green from blooms of planktonic phototrophs. In a study undertaken over 60 years ago, these blooms were predicted to include green sulfur bacteria, but no cultures were obtained. We sampled Hot Lake and established enrichment cultures for phototrophic sulfur bacteria in MgSO4-rich sulfidic media. Most enrichments turned green or red within 2 weeks, and from green-colored enrichments, pure cultures of a lobed green sulfur bacterium (phylum Chlorobi) were isolated. Phylogenetic analyses showed the organism to be a species of the prosthecate green sulfur bacterium Prosthecochloris. Cultures of this Hot Lake phototroph were halophilic and tolerated high levels of sulfide and MgSO4. In addition, unlike all recognized species of Prosthecochloris, the Hot Lake isolates grew at temperatures up to 45 °C, indicating an adaptation to the warm summer temperatures of the lake. Photoautotrophy by Hot Lake green sulfur bacteria may contribute dissolved organic matter to anoxic zones of the lake, and their diazotrophic capacity may provide a key source of bioavailable nitrogen, as well.


Assuntos
Chlorobi/isolamento & purificação , Chlorobi/fisiologia , Lagos/microbiologia , Chlorobi/classificação , Temperatura Alta , Lagos/química , Sulfato de Magnésio/análise , Sulfato de Magnésio/metabolismo , Fixação de Nitrogênio , Processos Fototróficos , Filogenia , Estações do Ano , Sulfetos/análise , Sulfetos/metabolismo , Washington
2.
Microbiology (Reading) ; 160(Pt 2): 362-72, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24324032

RESUMO

Bacteria from the genus Pedobacter are a major component of microbial assemblages at Hanford Site (a largely decommissioned nuclear production complex) in eastern Washington state, USA, and have been shown to change significantly in abundance in response to the subsurface intrusion of Columbia River water. Here we employed single-cell genomics techniques to shed light on the physiological niche of these micro-organisms. Analysis of four Pedobacter single amplified genomes (SAGs) from Hanford Site sediments revealed a chemoheterotrophic lifestyle, with the potential to exist under both aerobic and microaerophilic conditions via expression of both aa3-type and cbb3-type cytochrome c oxidases. These SAGs encoded a wide range of both intra- and extracellular carbohydrate-active enzymes, potentially enabling the degradation of recalcitrant substrates such as xylan and chitin, and the utilization of more labile sugars such as mannose and fucose. Coupled to these enzymes, a diversity of transporters and sugar-binding molecules were involved in the uptake of carbon from the extracellular local environment. The SAGs were enriched in TonB-dependent receptors, which play a key role in uptake of substrates resulting from degradation of recalcitrant carbon. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas mechanisms for resisting viral infections were identified in all SAGs. These data demonstrate the potential mechanisms utilized for persistence by heterotrophic micro-organisms in a carbon-limited aquifer, and hint at potential linkages between observed Pedobacter abundance shifts within the 300 Area (in the south-eastern corner of the site) subsurface and biogeochemical shifts associated with Columbia River water intrusion.


Assuntos
Genoma Bacteriano , Água Subterrânea/microbiologia , Pedobacter/crescimento & desenvolvimento , Pedobacter/genética , Aerobiose , Metabolismo dos Carboidratos , Carbono/metabolismo , Metabolismo Energético , Processos Heterotróficos , Redes e Vias Metabólicas/genética , Washington
3.
Microbiology (Reading) ; 160(2): 362-372, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28206912

RESUMO

Bacteria from the genus Pedobacter are a major component of microbial assemblages at Hanford Site (a largely decommissioned nuclear production complex) in eastern Washington state, USA, and have been shown to change significantly in abundance in response to the subsurface intrusion of Columbia River water. Here we employed single-cell genomics techniques to shed light on the physiological niche of these micro-organisms. Analysis of four Pedobacter single amplified genomes (SAGs) from Hanford Site sediments revealed a chemoheterotrophic lifestyle, with the potential to exist under both aerobic and microaerophilic conditions via expression of both aa3-type and cbb3-type cytochrome c oxidases. These SAGs encoded a wide range of both intra- and extracellular carbohydrate-active enzymes, potentially enabling the degradation of recalcitrant substrates such as xylan and chitin, and the utilization of more labile sugars such as mannose and fucose. Coupled to these enzymes, a diversity of transporters and sugar-binding molecules were involved in the uptake of carbon from the extracellular local environment. The SAGs were enriched in TonB-dependent receptors, which play a key role in uptake of substrates resulting from degradation of recalcitrant carbon. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas mechanisms for resisting viral infections were identified in all SAGs. These data demonstrate the potential mechanisms utilized for persistence by heterotrophic micro-organisms in a carbon-limited aquifer, and hint at potential linkages between observed Pedobacter abundance shifts within the 300 Area (in the south-eastern corner of the site) subsurface and biogeochemical shifts associated with Columbia River water intrusion.

4.
J Am Chem Soc ; 135(9): 3567-75, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23379730

RESUMO

Reversible disulfide oxidation between proximal cysteines in proteins represents a common regulatory control mechanism to modulate flux through metabolic pathways in response to changing environmental conditions. To enable in vivo measurements of cellular redox changes linked to disulfide bond formation, we have synthesized a cell-permeable thiol-reactive affinity probe (TRAP) consisting of a monosubstituted cyanine dye derivatized with arsenic (i.e., TRAP_Cy3) to trap and visualize dithiols in cytosolic proteins. Alkylation of reactive thiols prior to displacement of the bound TRAP_Cy3 by ethanedithiol permits facile protein capture and mass spectrometric identification of proximal reduced dithiols to the exclusion of individual cysteines. Applying TRAP_Cy3 to evaluate cellular responses to increases in oxygen and light levels in the photosynthetic microbe Synechococcus sp. PCC7002, we observe large decreases in the abundance of reduced dithiols in cellular proteins, which suggest redox-dependent mechanisms involving the oxidation of proximal disulfides. Under these same growth conditions that result in the oxidation of proximal thiols, there is a reduction in the abundance of post-translational oxidative protein modifications involving methionine sulfoxide and nitrotyrosine. These results suggest that the redox status of proximal cysteines responds to environmental conditions, acting to regulate metabolic flux and minimize the formation of reactive oxygen species to decrease oxidative protein damage.


Assuntos
Arsênio/metabolismo , Carbocianinas/metabolismo , Corantes Fluorescentes/metabolismo , Compostos de Sulfidrila/metabolismo , Synechococcus/metabolismo , Arsênio/química , Carbocianinas/síntese química , Carbocianinas/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Estrutura Molecular , Oxirredução , Compostos de Sulfidrila/química , Synechococcus/química , Synechococcus/citologia
5.
Metab Eng ; 15: 25-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23022551

RESUMO

A model-based analysis is conducted to investigate metabolism of Shewanella oneidensis MR-1 strain in aerobic batch culture, which exhibits an intriguing growth pattern by sequentially consuming substrate (i.e., lactate) and by-products (i.e., pyruvate and acetate). A general protocol is presented for developing a detailed network-based dynamic model for S. oneidensis based on the Lumped Hybrid Cybernetic Model (L-HCM) framework. The L-HCM, although developed from only limited data, is shown to accurately reproduce exacting dynamic metabolic shifts, and provide reasonable estimates of energy requirement for growth. Flux distributions in S. oneidensis predicted by the L-HCM compare very favorably with (13)C-metabolic flux analysis results reported in the literature. Predictive accuracy is enhanced by incorporating measurements of only a few intracellular fluxes, in addition to extracellular metabolites. The L-HCM developed here for S. oneidensis is consequently a promising tool for the analysis of intracellular flux distribution and metabolic engineering.


Assuntos
Reatores Biológicos/microbiologia , Modelos Biológicos , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Shewanella/citologia , Shewanella/fisiologia , Aerobiose/fisiologia , Proliferação de Células , Simulação por Computador , Taxa de Depuração Metabólica
6.
PLoS Comput Biol ; 8(4): e1002460, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22529767

RESUMO

Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to further improve the resolution of intracellular flux values.


Assuntos
Proteínas de Bactérias/metabolismo , Ciclo do Carbono/fisiologia , Cyanothece/metabolismo , Genoma/fisiologia , Modelos Biológicos , Proteoma/metabolismo , Transdução de Sinais/fisiologia , Ciclo do Carbono/efeitos da radiação , Simulação por Computador , Cyanothece/efeitos da radiação , Luz , Transdução de Sinais/efeitos da radiação
7.
Analyst ; 138(7): 1971-8, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23392077

RESUMO

Microorganisms release a diversity of organic compounds that couple interspecies metabolism, enable communication, or provide benefits to other microbes. Increased knowledge of microbial metabolite production will contribute to understanding of the dynamic microbial world and can potentially lead to new developments in drug discovery, biofuel production, and clinical research. Nanospray desorption electrospray ionization (nano-DESI) is an ambient ionization technique that enables detailed chemical characterization of molecules from a specific location on a surface without special sample pretreatment. Due to its ambient nature, living bacterial colonies growing on agar plates can be rapidly analyzed without affecting the viability of the colony. In this study we demonstrate for the first time the utility of nano-DESI for spatial profiling of chemical gradients generated by microbial communities on agar plates. We found that despite the high salt content of the agar used in this study (~350 mM), nano-DESI analysis enables detailed characterization of metabolites produced by the Synechococcus sp. PCC 7002 colonies. High resolution mass spectrometry and MS/MS analysis of the living Synechococcus sp. PCC 7002 colonies allowed us to detect metabolites and lipids on the colony and on the surrounding agar, and confirm their identities. High sensitivity of nano-DESI enabled identification of several glycolipids that have not been previously reported by extracting the cells using conventional methods. Spatial profiling demonstrated that a majority of lipids and metabolites were localized on the colony while sucrose and glucosylglycerol, an osmoprotective compound produced by cyanobacteria, were secreted onto agar. Furthermore, we demonstrated that the chemical gradients of sucrose and glucosylglycerol on agar depend on the age of the colony. The methodology presented in this study will facilitate future studies focused on molecular-level characterization of interactions between bacterial colonies.


Assuntos
Glicolipídeos/análise , Synechococcus/metabolismo , Ágar/química , Glucosídeos/metabolismo , Glicolipídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Sacarose/metabolismo , Synechococcus/crescimento & desenvolvimento , Espectrometria de Massas em Tandem
8.
Microb Ecol ; 66(4): 889-96, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24061343

RESUMO

Aquifer microbes in the 300 Area of the Hanford Site in southeastern Washington State, USA, are located in an oligotrophic environment and are periodically exposed to U(VI) concentrations that can range up to 10 µM in small sediment fractures. Assays of (3)H-leucine incorporation indicated that both sediment-associated and planktonic microbes were metabolically active, and that organic C was growth-limiting in the sediments. Although bacteria suspended in native groundwater retained high activity when exposed to 100 µM U(VI), they were inhibited by U(VI) <1 µM in synthetic groundwater that lacked added bicarbonate. Chemical speciation modeling suggested that positively charged species and particularly (UO2)3(OH)5 (+) rose in concentration as more U(VI) was added to synthetic groundwater, but that carbonate complexes dominated U(VI) speciation in natural groundwater. U toxicity was relieved when increasing amounts of bicarbonate were added to synthetic groundwater containing 4.5 µM U(VI). Pertechnetate, an oxyanion that is another contaminant of concern at the Hanford Site, was not toxic to groundwater microbes at concentrations up to 125 µM.


Assuntos
Bactérias/metabolismo , Ecossistema , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Sedimentos Geológicos/química , Água Subterrânea/química , Urânio/química , Urânio/metabolismo , Washington
9.
Environ Microbiol ; 14(2): 414-25, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22122741

RESUMO

Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington state (USA) was investigated by analysing 21 samples recovered from depths of 9-52 m. Approximately 8000 near full-length 16S rRNA gene sequences were analysed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (operational taxonomic units at the 97% identity level) respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (> 700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (c. 90%) of Proteobacteria. The bacterial community in the oxic sediments contained not only members of nine well-recognized phyla but also an unusually high proportion of three candidate divisions (GAL15, NC10 and SPAM). Additionally, 13 novel phylogenetic orders were identified within the Deltaproteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site.


Assuntos
Archaea/classificação , Bactérias/classificação , Archaea/genética , Archaea/crescimento & desenvolvimento , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Sequência de Bases , Biodiversidade , Genes de RNAr , Geologia , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S , Washington
10.
Appl Environ Microbiol ; 78(3): 759-67, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22138990

RESUMO

Subsurface sediments were recovered from a 52-m-deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9 to 17.4 m), the oxic fine-grained upper Ringold formation (17.7 to 18.1 m), and the reduced Ringold formation (18.3 to 52 m). Microbial biomass (measured as phospholipid fatty acids) ranged from 7 to 974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene that encodes nitrous oxide reductase (measured by quantitative real-time PCR) had an abundance of 5 to 17 relative to that of total 16S rRNA genes below 18.3 m and <5 above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97 sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90 similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5-m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum spp. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biota , Sedimentos Geológicos/microbiologia , Poluentes Radioativos da Água/metabolismo , Anaerobiose , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Oxirredução , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Washington
11.
Microb Ecol ; 63(4): 883-97, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22193925

RESUMO

We have developed a new kinetic model to study how microbial dynamics are affected by the heterogeneity in the physical structure of the environment and by different strategies for hydrolysis of polymeric carbon. The hybrid model represented the dynamics of substrates and enzymes using a continuum representation and the dynamics of the cells were modeled individually. Individual-based biological model allowed us to explicitly simulate microbial diversity, and to model cell physiology as regulated via optimal allocation of cellular resources to enzyme synthesis, control of growth rate by protein synthesis capacity, and shifts to dormancy. This model was developed to study how microbial community functioning is influenced by local environmental conditions in heterogeneous media such as soil and by the functional attributes of individual microbes. Microbial community dynamics were simulated at two spatial scales: micro-pores that resemble 6-20-µm size portions of the soil physical structure and in 111-µm size soil aggregates with a random pore structure. Different strategies for acquisition of carbon from polymeric cellulose were investigated. Bacteria that express membrane-associated hydrolase had different growth and survival dynamics in soil pores than bacteria that release extracellular hydrolases. The kinetic differences suggested different functional niches for these two microbe types in cellulose utilization. Our model predicted an emergent behavior in which co-existence of membrane-associated hydrolase and extracellular hydrolases releasing organisms led to higher cellulose utilization efficiency and reduced stochasticity. Our analysis indicated that their co-existence mutually benefits these organisms, where basal cellulose degradation activity by membrane-associated hydrolase-expressing cells shortened the soluble hydrolase buildup time and, when enzyme buildup allowed for cellulose degradation to be fast enough to sustain exponential growth, all the organisms in the community shared the soluble carbon product and grew together. Although pore geometry affected the kinetics of cellulose degradation, the patterns observed for the bacterial community dynamics in the 6-20 µm-sized micro-pores were relevant to the dynamics in the more complex 111-µm-sized porous soil aggregates, implying that micro-scale studies can be useful approximations to aggregate scale studies when local effects on microbial dynamics are studied. As shown with examples in this study, various functional niches of the bacterial communities can be investigated using complex predictive mathematical models where the role of key environmental aspects such as the heterogeneous three-dimensional structure, functional niches of the community members, and environmental biochemical processes are directly connected to microbial metabolism and maintenance in an integrated model.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Carbono/metabolismo , Modelos Biológicos , Microbiologia do Solo , Solo/química , Carbono/química , Celulose/metabolismo , Hidrolases/metabolismo , Hidrólise , Cinética , Especificidade por Substrato
12.
Environ Sci Technol ; 46(7): 3721-30, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22414073

RESUMO

The microbial reduction of Fe(III) and U(VI) was investigated in shallow aquifer sediments collected from subsurface flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and (57)Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in subsurface sediments incubated in sulfate-containing synthetic groundwater with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without, and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction of phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.


Assuntos
Bactérias/metabolismo , Inundações , Sedimentos Geológicos/química , Ferro/metabolismo , Silicatos/metabolismo , Urânio/metabolismo , Bactérias/genética , Biodegradação Ambiental , Biotransformação , Elétrons , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Espectroscopia de Mossbauer , Propriedades de Superfície , Temperatura , Washington
13.
Appl Environ Microbiol ; 77(23): 8234-40, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21965410

RESUMO

Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of a wide range of electron acceptors. Here, we quantitatively assessed the lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor-limited growth on lactate with O(2), lactate with fumarate, and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensable for growth, the respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions, S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the tricarboxylic acid (TCA) cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under conditions of O(2) limitation but was required for anaerobic growth, likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as an electron donor and an electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by a recently described new type of oxidative NAD(P)H-independent d-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by the generation of proton motive force.


Assuntos
Fumaratos/metabolismo , Ácido Láctico/metabolismo , Oxigênio/metabolismo , Ácido Pirúvico/metabolismo , Shewanella/crescimento & desenvolvimento , Shewanella/metabolismo , Trifosfato de Adenosina/biossíntese , Metabolismo Energético , Fermentação , Formiatos/metabolismo , Força Próton-Motriz
14.
PLoS Comput Biol ; 6(6): e1000822, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20589080

RESUMO

Shewanellae are gram-negative facultatively anaerobic metal-reducing bacteria commonly found in chemically (i.e., redox) stratified environments. Occupying such niches requires the ability to rapidly acclimate to changes in electron donor/acceptor type and availability; hence, the ability to compete and thrive in such environments must ultimately be reflected in the organization and utilization of electron transfer networks, as well as central and peripheral carbon metabolism. To understand how Shewanella oneidensis MR-1 utilizes its resources, the metabolic network was reconstructed. The resulting network consists of 774 reactions, 783 genes, and 634 unique metabolites and contains biosynthesis pathways for all cell constituents. Using constraint-based modeling, we investigated aerobic growth of S. oneidensis MR-1 on numerous carbon sources. To achieve this, we (i) used experimental data to formulate a biomass equation and estimate cellular ATP requirements, (ii) developed an approach to identify cycles (such as futile cycles and circulations), (iii) classified how reaction usage affects cellular growth, (iv) predicted cellular biomass yields on different carbon sources and compared model predictions to experimental measurements, and (v) used experimental results to refine metabolic fluxes for growth on lactate. The results revealed that aerobic lactate-grown cells of S. oneidensis MR-1 used less efficient enzymes to couple electron transport to proton motive force generation, and possibly operated at least one futile cycle involving malic enzymes. Several examples are provided whereby model predictions were validated by experimental data, in particular the role of serine hydroxymethyltransferase and glycine cleavage system in the metabolism of one-carbon units, and growth on different sources of carbon and energy. This work illustrates how integration of computational and experimental efforts facilitates the understanding of microbial metabolism at a systems level.


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Shewanella/crescimento & desenvolvimento , Shewanella/metabolismo , Trifosfato de Adenosina/metabolismo , Biomassa , Ácido Láctico/metabolismo , Modelos Lineares , Redes e Vias Metabólicas , Oxigênio/metabolismo , Fenótipo , Reprodutibilidade dos Testes
15.
Appl Environ Microbiol ; 75(19): 6249-57, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19684175

RESUMO

Chromium is often found as a cocontaminant at sites polluted with organic compounds. For nitrate-respiring microbes, Cr(VI) may be not only directly toxic but may also specifically interfere with N reduction. In soil microcosms amended with organic electron donors, Cr(VI), and nitrate, bacteria oxidized added carbon, but relatively low doses of Cr(VI) caused a lag and then lower rates of CO(2) accumulation. Cr(VI) strongly inhibited nitrate reduction; it occurred only after soluble Cr(VI) could not be detected. However, Cr(VI) additions did not eliminate Cr-sensitive populations; after a second dose of Cr(VI), bacterial activity was strongly inhibited. Differences in microbial community composition (assayed by PCR-denaturing gradient gel electrophoresis) driven by different organic substrates (glucose and protein) were smaller than when other electron acceptors had been used. However, the selection of bacterial phylotypes was modified by Cr(VI). Nine isolated clades of facultatively anaerobic Cr(VI)-resistant bacteria were closely related to cultivated members of the phylum Actinobacteria or Firmicutes. In Bacillus cereus GNCR-4, the nature of the electron donor (fermentable or nonfermentable) affected Cr(VI) resistance level and anaerobic nitrate metabolism. Our results indicate that carbon utilization and nitrate reduction in these soils were contingent upon the reduction of added Cr(VI). The amount of Cr(VI) required to inhibit nitrate reduction was 10-fold less than for aerobic catabolism of the same organic substrate. We speculate that the resistance level of a microbial process is directly related to the diversity of microbes capable of conducting it.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Cromo/farmacologia , Inibidores Enzimáticos/farmacologia , Nitratos/metabolismo , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Carbono/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico , Oxirredução , Análise de Sequência de DNA
16.
BMC Microbiol ; 9: 199, 2009 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-19758450

RESUMO

BACKGROUND: The genome of Arthrobacter sp. strain FB24 contains a chromate resistance determinant (CRD), consisting of a cluster of 8 genes located on a 10.6 kb fragment of a 96 kb plasmid. The CRD includes chrA, which encodes a putative chromate efflux protein, and three genes with amino acid similarities to the amino and carboxy termini of ChrB, a putative regulatory protein. There are also three novel genes that have not been previously associated with chromate resistance in other bacteria; they encode an oxidoreductase (most similar to malate:quinone oxidoreductase), a functionally unknown protein with a WD40 repeat domain and a lipoprotein. To delineate the contribution of the CRD genes to the FB24 chromate [Cr(VI)] response, we evaluated the growth of mutant strains bearing regions of the CRD and transcript expression levels in response to Cr(VI) challenge. RESULTS: A chromate-sensitive mutant (strain D11) was generated by curing FB24 of its 96-kb plasmid. Elemental analysis indicated that chromate-exposed cells of strain D11 accumulated three times more chromium than strain FB24. Introduction of the CRD into strain D11 conferred chromate resistance comparable to wild-type levels, whereas deletion of specific regions of the CRD led to decreased resistance. Using real-time reverse transcriptase PCR, we show that expression of each gene within the CRD is specifically induced in response to chromate but not by lead, hydrogen peroxide or arsenate. Higher levels of chrA expression were achieved when the chrB orthologs and the WD40 repeat domain genes were present, suggesting their possible regulatory roles. CONCLUSION: Our findings indicate that chromate resistance in Arthrobacter sp. strain FB24 is due to chromate efflux through the ChrA transport protein. More importantly, new genes have been identified as having significant roles in chromate resistance. Collectively, the functional predictions of these additional genes suggest the involvement of a signal transduction system in the regulation of chromate efflux and warrants further study.


Assuntos
Arthrobacter/genética , Proteínas de Bactérias/genética , Cromatos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/genética , Arthrobacter/efeitos dos fármacos , Cromo/farmacologia , Clonagem Molecular , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Teste de Complementação Genética , Família Multigênica , Elementos Reguladores de Transcrição , Análise de Sequência de DNA
17.
Biotechnol Bioeng ; 100(3): 542-59, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18438875

RESUMO

Cybernetic modeling strives to uncover the inbuilt regulatory programs of biological systems and leverage them toward computational prediction of metabolic dynamics. Because of its focus on incorporating the global aims of metabolism, cybernetic modeling provides a systems-oriented approach for describing regulatory inputs and inferring the impact of regulation within biochemical networks. Combining cybernetic control laws with concepts from metabolic pathway analysis has culminated in a systematic strategy for constructing cybernetic models, which was previously lacking. The newly devised framework relies upon the simultaneous application of local controls that maximize the net flux through each elementary flux mode and global controls that modulate the activities of these modes to optimize the overall nutritional state of the cell. The modeling concepts are illustrated using a simple linear pathway and a larger network representing anaerobic E. coli central metabolism. The E. coli model successfully describes the metabolic shift that occurs upon deleting the pta-ackA operon that is responsible for fermentative acetate production. The model also furnishes predictions that are consistent with experimental results obtained from additional knockout strains as well as strains expressing heterologous genes. Because of the stabilizing influence of the included control variables, the resulting cybernetic models are more robust and reliable than their predecessors in simulating the network response to imposed genetic and environmental perturbations.


Assuntos
Simulação por Computador , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Acetatos/metabolismo , Anaerobiose , Células Cultivadas , Escherichia coli/genética , Redes e Vias Metabólicas/genética , Óperon/genética
18.
Nat Commun ; 9(1): 1034, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29515121

RESUMO

The original version of this Article contained an error in Fig. 6e, in which the text in the legend was omitted. This has been corrected in both the PDF and HTML versions of the article.

19.
Nat Commun ; 9(1): 585, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422537

RESUMO

The hyporheic corridor (HC) encompasses the river-groundwater continuum, where the mixing of groundwater (GW) with river water (RW) in the HC can stimulate biogeochemical activity. Here we propose a novel thermodynamic mechanism underlying this phenomenon and reveal broader impacts on dissolved organic carbon (DOC) and microbial ecology. We show that thermodynamically favorable DOC accumulates in GW despite lower DOC concentration, and that RW contains thermodynamically less-favorable DOC, but at higher concentrations. This indicates that GW DOC is protected from microbial oxidation by low total energy within the DOC pool, whereas RW DOC is protected by lower thermodynamic favorability of carbon species. We propose that GW-RW mixing overcomes these protections and stimulates respiration. Mixing models coupled with geophysical and molecular analyses further reveal tipping points in spatiotemporal dynamics of DOC and indicate important hydrology-biochemistry-microbial feedbacks. Previously unrecognized thermodynamic mechanisms regulated by GW-RW mixing may therefore strongly influence biogeochemical and microbial dynamics in riverine ecosystems.


Assuntos
Carbono/metabolismo , Água Subterrânea , Rios , Ciclo Hidrológico , Microbiologia da Água , Ecossistema , Água Doce/química , Água Doce/microbiologia , Água Subterrânea/química , Água Subterrânea/microbiologia , Rios/química , Rios/microbiologia
20.
FEMS Microbiol Ecol ; 57(1): 1-8, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16819944

RESUMO

In nature, microbes are subject to nutrient fluxes. As the periodicity of nutrient flux lengthens, different physiological traits may be selected. The competitive exclusion principle stipulates that one organism will dominate these systems; however, interspecies interactions may produce a dynamic microbial community. These issues were investigated in chemostats pulsed with gelatin. Chemostats were run over 30 days with substrate addition continuously or at intervals of 0.5, 1 or 3 days. Growth rates were similar between pulse intervals. Ectoaminopeptidase activity levels remained relatively constant within a pulse interval. Bacterial community structure was monitored using denaturing gradient gel electrophoresis of PCR products of the 16S rRNA gene. There were dynamic changes at all periodicities; however, the pace of these changes decreased over time. Final communities were not identical between different treatments. The structure of persistent vs. active microbial populations was compared by denaturing gradient gel electrophoresis of the PCR and reverse transcriptase-PCR amplicons of 16S rDNA and rRNA templates, respectively. For all the chemostats, the rRNA profiles were not identical to the rDNA profiles for a sample. These experiments demonstrate that complex community dynamics can occur under environmental heterogeneities that are modest relative to those found in natural aquatic habitats. Furthermore, the physiological functionality of these dynamic communities was stable.


Assuntos
Aminopeptidases/metabolismo , Bactérias/crescimento & desenvolvimento , Meios de Cultura , Ecossistema , Periodicidade , RNA Ribossômico 16S/química , Esgotos/microbiologia , Biomassa , Reatores Biológicos/microbiologia , Eletroforese/métodos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA