Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 40(17): 9170-9179, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644569

RESUMO

Molybdenum carbide MXenes have garnered considerable attention in electronics, energy storage, and catalysis. However, they are prone to oxidative degradation, but the associated mechanisms have not been systematically explored. Therefore, the oxidation mechanisms of Mo-based single-metallic/bimetallic carbide MXenes including Mo2CTx, Mo2TiC2Tx, and Mo2Ti2C3Tx in aqueous suspensions were investigated for the first time in this study. Similar to Ti3C2Tx MXene, Mo-based MXenes were found to undergo oxidative degradation in their aqueous dispersions, leading to the disruption of their crystal structure and subsequent loss of optical and electronic properties. Notably, the Mo2CTx MXene deviated from this typical oxidation behavior as it produced an amorphous product with Mo ions instead of highly crystalline Mo-oxides during oxidation. Similarly, the Mo2TiC2Tx and Mo2Ti2C3Tx MXenes did not yield crystalline Mo-oxides; instead, they produced highly crystalline anatase TiO2 and a Mo-ion-containing amorphous product simultaneously. Furthermore, high-temperature annealing of the oxidized Mo2CTx MXene powder at 800 °C transformed the amorphous Mo-containing product into highly crystalline MoO2 crystals. These findings highlight the unconventional oxidation behavior of Mo-based MXenes, which suggests that the formation of crystalline Mo-based oxides requires a higher activation energy during oxidation than that of TiO2. The unique oxidative pathway reported herein can help elucidate the oxidation mechanisms of Mo-based MXene dispersions and their products. The insights from this study can pave the way for fundamental studies in academia as well as broaden the applications of Mo-based MXenes in various industries.

2.
Small ; 18(46): e2203767, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36069279

RESUMO

2D transition metal carbides or nitrides (MXenes) have attracted considerable attention from materials scientists and engineers owing to their physicochemical properties. Currently, MXenes are synthesized from MAX-phase precursors using aqueous HF. Here, in order to enhance the production of MXenes, an anhydrous etching solution is proposed, consisting of dimethylsulfoxide as solvent with its high boiling point, NH4 HF2 as an etchant, CH3 SO3 H as an acid, and NH4 PF6 as an intercalant. The reaction temperature can be increased up to 100 °C to accelerate the etching and delamination of Ti3 AlC2 MAX crystals; in addition, the destructive side reaction of the produced Ti3 C2 Tx MXene is suppressed in the etchant. Consequently, the etching reaction is completed in 4 h at 100 °C and produces high-quality monolayer Ti3 C2 Tx with an electrical conductivity of 8200 S cm-1 and yield of over 70%. The Ti3 C2 Tx MXene fabricated via this modified synthesis exhibits different surface structures and properties arising from more F-terminations than those of Ti3 C2 Tx synthesized in aqueous HF2 T. The atypical surface structure of Ti3 C2 Tx MXene results in an exceptionally high ultimate tensile strength (167 ± 8 MPa), which is five times larger than those of Ti3 C2 Tx MXenes synthesized in aqueous HF solution (31.7 ± 7.8 MPa).

3.
Langmuir ; 38(41): 12657-12665, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36206453

RESUMO

While two-dimensional (2D) Ti3C2Tx MXene in aqueous dispersions spontaneously oxidizes into titanium dioxide (TiO2) nanocrystals, the crystallization mechanism has not been comprehensively understood and the resultant crystal structures are not controlled among three representative polymorphs: anatase, rutile, and brookite. In this study, such control on the lattice structures and domain sizes of the MXene-derived TiO2 crystallites is demonstrated by means of the oxidation conditions, pH, and temperature (3.0-11.0 and 20-100 °C, respectively). It is observed that the formation of anatase phase is preferred against rutile phase in more basic and hotter oxidizing solutions, and even 100% anatase can be obtained at pH 11.0 and 100 °C. At lower pH and temperature, the portion of rutile phase increases such that it reaches ∼70% at pH 3 and 20 °C. Under certain circumstances, small portion of brookite phase is also observed. Smaller domain sizes of both anatase and rutile phases are observed in more basic oxidizing solutions and at lower temperatures. Based on these experimental results, we propose the crystallization mechanism in which the oxidative dissociation of Ti3C2Tx first produces Ti ions as the intermediate state, and they bind to abundant oxygen in the aqueous dispersions, and nucleate and crystallize into TiO2.

5.
Macromol Rapid Commun ; 38(19)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833812

RESUMO

Surface wrinkling is a promising route to control the mechanical, electrical, and optical properties of materials in a wide range of applications. However, previous artificial wrinkles are restricted to single or random orientation and lacks selectivity. To address this challenge, this study presents multidirectional wrinkle patterns with high selectivity and orientation through sequential uniaxial strain with conformal polymeric shadow masks. The conformal but nontraceable polymeric stencil with microapertures are adhered to a flat substrate prior to oxidation, which forms discrete and parallel wrinkles in confined domains without any contamination. By fully investigating the process, this study displays compound topography of wrinkles consisting of wrinkle islands and surrounding secondary wrinkles on the same surface. With this topography, various diffusion properties are presented: from semi-transparent yet diffusive films to multidirectional diffusive films, which will be available for new types of optical diffuser applications.


Assuntos
Polímeros/química , Envelhecimento da Pele/fisiologia , Pele , Humanos , Microscopia Eletrônica de Varredura , Conformação Molecular , Pele/química , Pele/ultraestrutura , Propriedades de Superfície
6.
Nano Lett ; 15(2): 1190-6, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25590438

RESUMO

Molecular self-assembly commonly suffers from dense structural defect formation. Spontaneous defect annihilation in block copolymer (BCP) self-assembly is particularly retarded due to significant energy barrier for polymer chain diffusion and structural reorganization. Here we present localized defect melting induced by blending short neutral random copolymer chain as an unusual method to promote the defect annihilation in BCP self-assembled nanopatterns. Chemically neutral short random copolymer chains blended with BCPs are specifically localized and induce local disordered states at structural defect sites in the self-assembled nanopatterns. Such localized "defect melting" relieves the energy penalty for polymer diffusion and morphology reorganization such that spontaneous defect annihilation by mutual coupling is anomalously accelerated upon thermal annealing. Interestingly, neutral random copolymer chain blending also causes morphology-healing self-assembly behavior that can generate large-area highly ordered 10 nm scale nanopattern even upon poorly defined defective prepatterns. Underlying mechanisms of the unusual experimental findings are thoroughly investigated by three-dimensional self-consistent field theory calculation.

7.
Adv Mater ; 36(19): e2311411, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288859

RESUMO

Heterointerface engineering, which plays a pivotal role in developing advanced microwave-absorbing materials, is employed to design zeolitic imidazolate framework (ZIF)-MXene nanocomposites. The ZIF-MXene composites are prepared by electrostatic self-assembly of negatively charged titanium carbide MXene flakes and positively charged Co-containing ZIF nanomaterials. This approach effectively creates abundant Mott-Schottky heterointerfaces exhibiting a robust built-in electric field (BIEF) effect, as evidenced by experimental and theoretical analyses, leading to a notable attenuation of electromagnetic energy. Systematic manipulation of the BIEF-exhibiting heterointerface, achieved through topological modulation of the ZIF, proficiently alters charge separation, facilitates electron migration, and ultimately enhances polarization relaxation loss, resulting in exceptional electromagnetic wave absorption performance (reflection loss RLmin = -47.35 dB and effective absorption bandwidth fE = 6.32 GHz). The present study demonstrates an innovative model system for elucidating the interfacial polarization mechanisms and pioneers a novel approach to developing functional materials with electromagnetic characteristics through spatial charge engineering.

8.
Adv Mater ; 36(21): e2309189, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38530975

RESUMO

Surface plasmons in 2D materials such as graphene exhibit exceptional field confinement. However, the low electron density of majority of 2D materials, which are semiconductors or semimetals, has limited their plasmons to mid-wave or long-wave infrared regime. This study demonstrates that a 2D Ti3C2Tx MXene with high electron density can not only support strong plasmon confinement with an acoustic plasmon mode in the short-wave infrared region, but also provide ultrahigh nonlinear responses. The acoustic MXene plasmons (AMPs) in the MXene (Ti3C2Tx)-insulator (SiO2)-metal (Au) nanostructure generate in the 1.5-6.0 µm wavelength range, exhibiting a two orders of magnitude reduction in wavelength compared to wavelength in free space. Furthermore, AMP resonators with patterned Au rods exhibit a record-high nonlinear absorption coefficient of 1.37 × 10-2 m W-1 at wavelength of 1.56 µm, ≈3 orders of magnitude greater than the highest value recorded for other 2D materials. These results indicate that MXenes can overcome fundamental plasmon wavelength limitations of previously studied 2D materials, providing groundbreaking opportunities in nonlinear optical applications, including all-optical processing and ultrafast optical switching.

9.
ACS Appl Mater Interfaces ; 16(7): 9137-9143, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38345830

RESUMO

In recent years, there has been significant interest in researching ultrafast nonlinear optical phenomena involving light-matter interactions in two-dimensional (2D) materials, owing to their potential applications in optics and photonics. MXene, a recently developed 2D material, has garnered considerable attention due to its graphene-like properties and highly tunable electronic/optical characteristics. Herein, we demonstrate ultrafast all-optical switches based on four-wave-mixing (FWM) utilizing the nonlinear optical property of MXene Ti3C2Tx. In order to realize the device, we deposited multilayered Ti3C2Tx in the form of a supernatant solution onto the polished surface of a side-polished optical fiber, enabling the interaction of Ti3C2Tx with the asymmetric evanescent field of the incident input. We systematically characterized the nonlinear optical responses derived from the Ti3C2Tx layers. The fabricated device exhibits notable performance metrics, an enhancement of the extinction ratio, and a conversion efficiency of the newly generated signal, displaying 5.3 and 5.2 dB, respectively. Additionally, the device operates at high modulation frequencies, reaching up to 20 GHz, and demonstrates high-resolution detuning with channel distances of up to 15 nm. Our findings highlight the potential of MXene-based materials for ultrafast optical data management systems.

10.
Nanomicro Lett ; 16(1): 216, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874857

RESUMO

Multifunctional, flexible, and robust thin films capable of operating in demanding harsh temperature environments are crucial for various cutting-edge applications. This study presents a multifunctional Janus film integrating highly-crystalline Ti3C2Tx MXene and mechanically-robust carbon nanotube (CNT) film through strong hydrogen bonding. The hybrid film not only exhibits high electrical conductivity (4250 S cm-1), but also demonstrates robust mechanical strength and durability in both extremely low and high temperature environments, showing exceptional resistance to thermal shock. This hybrid Janus film of 15 µm thickness reveals remarkable multifunctionality, including efficient electromagnetic shielding effectiveness of 72 dB in X band frequency range, excellent infrared (IR) shielding capability with an average emissivity of 0.09 (a minimal value of 0.02), superior thermal camouflage performance over a wide temperature range (- 1 to 300 °C) achieving a notable reduction in the radiated temperature by 243 °C against a background temperature of 300 °C, and outstanding IR detection capability characterized by a 44% increase in resistance when exposed to 250 W IR radiation. This multifunctional MXene/CNT Janus film offers a feasible solution for electromagnetic shielding and IR shielding/detection under challenging conditions.

11.
ACS Nano ; 18(34): 23477-23488, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39133538

RESUMO

MXenes have garnered significant attention due to their atomically thin two-dimensional structure with metallic electronic properties. However, it has not yet been fully achieved to discover semiconducting MXenes to implement them into gate-tunable electronics such as field-effect transistors and phototransistors. Here, a semiconducting Ti4N3Tx MXene synthesized by using a modified oxygen-assisted molten salt etching method under ambient conditions, is reported. The oxygen-rich synthesis environment significantly enhances the etching reaction rate and selectivity of Al from a Ti4AlN3 MAX phase, resulting in well-delaminated and highly crystalline Ti4N3Tx MXene with minimal defects and high content of F and O, which led to its improved hydrophobicity and thermal stability. Notably, the synthesized Ti4N3Tx MXene exhibited p-type semiconducting characteristics, including gate-tunable electrical conductivity, with a current on-off ratio of 5 × 103 and a hole mobility of ∼0.008 cm2 V-1 s-1 at 243 K. The semiconducting property crucial for thin-film transistor applications is evidently associated with the surface terminations and the partial substitution of oxygen in the nitrogen lattice, as corroborated by density functional theory (DFT) calculations. Furthermore, the synthesized Ti4N3Tx exhibits strong light absorption characteristics and photocurrent generation. These findings highlight the delaminated Ti4N3Tx as an emerging two-dimensional semiconducting material for potential electronic and optoelectronic applications.

12.
J Nanosci Nanotechnol ; 13(5): 3606-10, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23858912

RESUMO

Thermal annealing effect on the physical properties of two ionic (poly((t-butyl-styrene)-b-(ethylene-r-propylene)-b-(styrene-r-styrene sulfonate)-b-(ethylene-r-propylene)-b-(t-butyl-styrene (SSPB) pentablock copolymers with different ion exchange capacities (IEC; 1.5 and 2.0 meq/g) and their electromechanical responses in ionic polymer-metal composite (IPMC) devices have been investigated. The ionic SSPB formed the microphase-separated morphology on the several tens nanometer scale and the selectively sulfonated styrene middle blocks formed the ionic channels through which ions can pass in the membrane. The thermal annealing at a high temperature led to the well developed interconnectivity between adjacent ionic channels, and thus enhanced the ion conductivity and mechanical strength of membranes, resulting in an actuation enhancement of the SSPB-based ionic actuator.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Estirenos/química , Módulo de Elasticidade , Condutividade Elétrica , Dureza , Temperatura Alta , Teste de Materiais , Tamanho da Partícula , Resistência à Tração
13.
Small Methods ; 7(8): e2201579, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36929585

RESUMO

Surface chemistry influences not only physicochemical properties but also safety and applications of MXene nanomaterials. Fluorinated Ti3 C2 Tx MXene, synthesized using conventional HF-based etchants, raises concerns regarding harmful effects on electronics and toxicity to living organisms. In this study, well-delaminated halogen-free Ti3 C2 Tx flakes are synthesized using NaOH-based etching solution. The transversal surface plasmon mode of halogen-free Ti3 C2 Tx MXene (833 nm) confirmed red-shift compared to conventional Ti3 C2 Tx (752 nm), and the halogen-free Ti3 C2 Tx MXene has a different density of state by the high proportion of -O and -OH terminations. The synthesized halogen-free Ti3 C2 Tx exhibits a lower water contact angle (34.5°) and work function (3.6 eV) than those of fluorinated Ti3 C2 Tx (49.8° and 4.14 eV, respectively). The synthesized halogen-free Ti3 C2 Tx exhibits high biocompatibility with the living cells, as evidenced by no noticeable cytotoxicity, even at very high concentrations (2000 µg mL⁻1 ), at which fluorinated Ti3 C2 Tx caused ≈50% reduction in cell viability upon its oxidation. Additionally, the oxidation stability of halogen-free Ti3 C2 Tx is enhanced unexpectedly, which cumulatively provides a good rationale for pursuing the halogen-free routes for synthesizing MXene materials for their uses in biomedical and therapeutic applications.

14.
Small Methods ; 7(8): e2201715, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36855195

RESUMO

MXenes are an emerging class of 2D materials with unique properties including metallic conductivity, mechanical flexibility, and surface tunability, which ensure their utility for diverse applications. However, the synthesis of MXenes with high crystallinity and atomic stoichiometry in a low-cost process is still challenging because of the difficulty in controlling the oxygen substitute in the precursors and final products of MXenes, which limits their academic understanding and practical applications. Here, a novel cost-effective method is reported to synthesize a highly crystalline and stoichiometric Ti3 C2 Tx MXene with minimum substitutional oxygen impurities by controlling the amount of excess carbon and time of high-energy milling in carbothermal reduction of recycled TiO2 source. The highest used content (2 wt%) of excess-carbon yields TiC with the highest carbon content and minimal oxygen substitutes, which leads to the Ti3 AlC2 MAX phase with improved crystallinity and atomic stoichiometry, and finally Ti3 C2 Tx MXene with the highest electrical conductivity (11738 S cm-1 ) and superior electromagnetic shielding effectiveness. Additionally, the effects of carbon content and substitutional oxygen on the physical properties of TiC and Ti3 AlC2 are elucidated by density-functional-theory calculations. This inexpensive TiO2 -based method of synthesizing high-quality Ti3 C2 Tx MXene can facilitate large-scale production and thus accelerate global research on MXenes.

15.
Adv Sci (Weinh) ; 9(35): e2204151, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36253151

RESUMO

Texture regulation of metal-organic frameworks (MOFs) is essential for controlling their electromagnetic wave (EMW) absorption properties. This review systematically summarizes the recent advancements in texture regulation strategies for MOFs, including etching and exchange of central ions, etching and exchange of ligands, chemically induced self-assembly, and MOF-on-MOF heterostructure design. Additionally, the EMW absorption mechanisms in approaches based on structure-function dependencies, including nano-micro topological engineering, defect engineering, interface engineering, and hybrid engineering, are comprehensively explored. Finally, current challenges and future research orientation are proposed. This review aims to provide new perspectives for designing MOF-derived EMW-absorption materials to achieve essential breakthroughs in mechanistic investigations in this promising field.


Assuntos
Estruturas Metalorgânicas , Micro-Ondas , Engenharia
16.
ACS Nano ; 16(10): 16976-16986, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36197991

RESUMO

Two-dimensional transition metal carbide/nitride (MXene) conductive inks are promising for scalable production of printable electronics, electromagnetic devices, and multifunctional coatings. However, the susceptible oxidation and poor rheological property seriously impede the printability of MXene inks and the exploration of functional devices. Here, we proposed a controllable surface grafting strategy for MXene flakes (p-MXene) with prepolymerized polydopamine macromolecules to protect against water and oxygen, enrich surface chemistry, and significantly optimize the rheological properties of the inks. The obtained p-MXene inks can adapt to screen-printing and other high-viscosity processing techniques, facilitating the development of patterned electromagnetic films and coatings. Interestingly, the printed MXene polarizer can freely switch and quantitatively control microwave transmission, giving an inspiring means for smart microwave modulation beyond the commonly reported shielding function. Moreover, the introduction of polydopamine nanoshell enables the infrared emissivity of MXene coating to be adjusted to a large extent, which can produce infrared anti-counterfeiting patterns in a thermal imager. Therefore, multifunctional antioxidant p-MXene inks will greatly extend the potential applications for the next-generation printable electronics and devices.

17.
ACS Nano ; 16(6): 9203-9213, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35588151

RESUMO

The development of electrodes with high conductivity, optical transparency, and reliable mechanical flexibility and stability is important for numerous solution-processed photoelectronic applications. Although transparent Ti3C2TX MXene electrodes with high conductivity are promising, their suitability for displays remains limited because of the high sheet resistance, which is caused by undesirable flake junctions and surface roughness. Herein, a flexible and transparent electrode has been fabricated that is suitable for a full-solution-processed quantum dot light-emitting diode (QLED). An MXene-silver nanowire (AgNW) hybrid electrode (MXAg) consists of a highly conductive AgNW network mixed with solution-processed MXene flakes. Efficient welding of wire-to-wire junctions with MXene flakes yields an electrode with a low sheet resistance and a high transparency of approximately 13.9 Ω sq-1 and 83.8%, respectively. By employing a thin polymer buffer layer of poly(methyl methacrylate) (PMMA), followed by mild thermal treatment, a hybrid PMMA-based MXene-AgNW (MXAg@PMMA) electrode in which the work function of an MXAg hybrid FTE physically embedded in PMMA (MXAg@PMMA) can be tuned by controlling the amount of MXene in the hybrid film facilitates the development of a high-performance solution-processed QLED that exhibits maximum external quantum and current efficiencies of approximately 9.88% and 25.8 cd/A, respectively, with excellent bending stability. This work function-tunable flexible transparent electrode based on solution-processed nanoconductors provides a way to develop emerging high-performance, wearable, cost-effective, and soft electroluminescent devices.

18.
Nat Commun ; 13(1): 5615, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153310

RESUMO

Controlling the orientation of two-dimensional materials is essential to optimize or tune their functional properties. In particular, aligning MXene, a two-dimensional carbide and/or nitride material, has recently received much attention due to its high conductivity and high-density surface functional group properties that can easily vary based on its arranged directions. However, erecting 2D materials vertically can be challenging, given their thinness of few nanometres. Here, vertical alignment of Ti3C2Tx MXene sheets is achieved by applying an in-plane electric field, which is directly observed using polarised optical microscopy and scanning electron microscopy. The electric field-induced vertical alignment parallel to the applied alternating-current field is demonstrated to be reversible in the absence of a field, back to a random orientation distribution. Interdigitated electrodes with uniaxially aligned MXene nanosheets are demonstrated. These can be further modulated to achieve various patterns using diversified electrode substrates. Anisotropic electrical conductivity is also observed in the uniaxially aligned MXene nanosheet film, which is quite different from the randomly oriented ones. The proposed orientation-controlling technique demonstrates potential for many applications including sensors, membranes, polarisers, and general energy applications.

19.
ACS Nano ; 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36374133

RESUMO

Ligands can control the surface chemistry, physicochemical properties, processing, and applications of nanomaterials. MXenes are the fastest growing family of two-dimensional (2D) nanomaterials, showing promise for energy, electronic, and environmental applications. However, complex oxidation states, surface terminal groups, and interaction with the environment have hindered the development of organic ligands suitable for MXenes. Here, we demonstrate a simple, fast, scalable, and universally applicable ligand chemistry for MXenes using alkylated 3,4-dihydroxy-l-phenylalanine (ADOPA). Due to the strong hydrogen-bonding and π-electron interactions between the catechol head and surface terminal groups of MXenes and the presence of a hydrophobic fluorinated alkyl tail compatible with organic solvents, the ADOPA ligands functionalize MXene surfaces under mild reaction conditions without sacrificing their properties. Stable colloidal solutions and highly concentrated liquid crystals of various MXenes, including Ti2CTx, Nb2CTx, V2CTx, Mo2CTx, Ti3C2Tx, Ti3CNTx, Mo2TiC2Tx, Mo2Ti2C3Tx, and Ti4N3Tx, have been produced in various organic solvents. Such products offer excellent electrical conductivity, improved oxidation stability, and excellent processability, enabling applications in flexible electrodes and electromagnetic interference shielding.

20.
Nano Converg ; 8(1): 9, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33723803

RESUMO

Understanding and preventing oxidative degradation of MXene suspensions is essential for fostering fundamental academic studies and facilitating widespread industrial applications. Owing to their outstanding electrical, electrochemical, optoelectronic, and mechanical properties, MXenes, an emerging class of two-dimensional (2D) nanomaterials, show promising state-of-the-art performances in various applications including electromagnetic interference (EMI) shielding, terahertz shielding, electrochemical energy storage, triboelectric nanogenerators, thermal heaters, light-emitting diodes (LEDs), optoelectronics, and sensors. However, MXene synthesis using harsh chemical etching causes many defects or vacancies on the surface of the synthesized MXene flakes. Defective sites are vulnerable to oxidative degradation reactions with water and/or oxygen, which deteriorate the intrinsic properties of MXenes. In this review, we demonstrate the nature of oxidative degradation of MXenes and highlight the recent advancements in controlling the oxidation kinetics of MXenes with several promising strategic approaches, including careful control of the quality of the parent MAX phase, chemical etching conditions, defect passivation, dispersion medium, storage conditions, and polymer composites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA