Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Development ; 149(10)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35451473

RESUMO

Notch signaling promotes maturation of nephron epithelia, but its proposed contribution to nephron segmentation into proximal and distal domains has been called into doubt. We leveraged single cell and bulk RNA-seq, quantitative immunofluorescent lineage/fate tracing, and genetically modified human induced pluripotent stem cells (iPSCs) to revisit this question in developing mouse kidneys and human kidney organoids. We confirmed that Notch signaling is needed for maturation of all nephron lineages, and thus mature lineage markers fail to detect a fate bias. By contrast, early markers identified a distal fate bias in cells lacking Notch2, and a concomitant increase in early proximal and podocyte fates in cells expressing hyperactive Notch1 was observed. Orthogonal support for a conserved role for Notch signaling in the distal/proximal axis segmentation is provided by the demonstration that nicastrin (NCSTN)-deficient human iPSC-derived organoids differentiate into TFA2B+ distal tubule and CDH1+ connecting segment progenitors, but not into HNF4A+ or LTL+ proximal progenitors.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/metabolismo , Camundongos , Néfrons/metabolismo , Organogênese/genética , Receptores Notch/genética , Receptores Notch/metabolismo
2.
Nat Immunol ; 14(9): 937-48, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23913046

RESUMO

Defense against attaching-and-effacing bacteria requires the sequential generation of interleukin 23 (IL-23) and IL-22 to induce protective mucosal responses. Although CD4(+) and NKp46(+) innate lymphoid cells (ILCs) are the critical source of IL-22 during infection, the precise source of IL-23 is unclear. We used genetic techniques to deplete mice of specific subsets of classical dendritic cells (cDCs) and analyzed immunity to the attaching-and-effacing pathogen Citrobacter rodentium. We found that the signaling receptor Notch2 controlled the terminal stage of cDC differentiation. Notch2-dependent intestinal CD11b(+) cDCs were an obligate source of IL-23 required for survival after infection with C. rodentium, but CD103(+) cDCs dependent on the transcription factor Batf3 were not. Our results demonstrate a nonredundant function for CD11b(+) cDCs in the response to pathogens in vivo.


Assuntos
Citrobacter rodentium/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Receptor Notch2/metabolismo , Animais , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/mortalidade , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Interleucina-23/metabolismo , Mucosa Intestinal/microbiologia , Lectinas Tipo C/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Camundongos , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor , Receptor Notch2/deficiência , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Baço/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cicatrização/genética , Cicatrização/imunologia
3.
Cell ; 137(2): 216-33, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19379690

RESUMO

Notch signaling regulates many aspects of metazoan development and tissue renewal. Accordingly, the misregulation or loss of Notch signaling underlies a wide range of human disorders, from developmental syndromes to adult-onset diseases and cancer. Notch signaling is remarkably robust in most tissues even though each Notch molecule is irreversibly activated by proteolysis and signals only once without amplification by secondary messenger cascades. In this Review, we highlight recent studies in Notch signaling that reveal new molecular details about the regulation of ligand-mediated receptor activation, receptor proteolysis, and target selection.


Assuntos
Receptores Notch/metabolismo , Transdução de Sinais , Animais , Humanos , Receptores Notch/química
4.
PLoS Genet ; 17(6): e1009574, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34111109

RESUMO

Runt-related transcription factor 1 (Runx1) can act as both an activator and a repressor. Here we show that CRISPR-mediated deletion of Runx1 in mouse metanephric mesenchyme-derived mK4 cells results in large-scale genome-wide changes to chromatin accessibility and gene expression. Open chromatin regions near down-regulated loci enriched for Runx sites in mK4 cells lose chromatin accessibility in Runx1 knockout cells, despite remaining Runx2-bound. Unexpectedly, regions near upregulated genes are depleted of Runx sites and are instead enriched for Zeb transcription factor binding sites. Re-expressing Zeb2 in Runx1 knockout cells restores suppression, and CRISPR mediated deletion of Zeb1 and Zeb2 phenocopies the gained expression and chromatin accessibility changes seen in Runx1KO due in part to subsequent activation of factors like Grhl2. These data confirm that Runx1 activity is uniquely needed to maintain open chromatin at many loci, and demonstrate that Zeb proteins are required and sufficient to maintain Runx1-dependent genome-scale repression.


Assuntos
Cromatina/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação para Baixo , Camundongos , Camundongos Knockout , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
5.
PLoS Genet ; 17(9): e1009039, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34559800

RESUMO

Notch signaling controls many developmental processes by regulating gene expression. Notch-dependent enhancers recruit activation complexes consisting of the Notch intracellular domain, the Cbf/Su(H)/Lag1 (CSL) transcription factor (TF), and the Mastermind co-factor via two types of DNA sites: monomeric CSL sites and cooperative dimer sites called Su(H) paired sites (SPS). Intriguingly, the CSL TF can also bind co-repressors to negatively regulate transcription via these same sites. Here, we tested how synthetic enhancers with monomeric CSL sites versus dimeric SPSs bind Drosophila Su(H) complexes in vitro and mediate transcriptional outcomes in vivo. Our findings reveal that while the Su(H)/Hairless co-repressor complex similarly binds SPS and CSL sites in an additive manner, the Notch activation complex binds SPSs, but not CSL sites, in a cooperative manner. Moreover, transgenic reporters with SPSs mediate stronger, more consistent transcription and are more resistant to increased Hairless co-repressor expression compared to reporters with the same number of CSL sites. These findings support a model in which SPS containing enhancers preferentially recruit cooperative Notch activation complexes over Hairless repression complexes to ensure consistent target gene activation.


Assuntos
Proteínas de Drosophila/fisiologia , Elementos Facilitadores Genéticos , Receptores Notch/metabolismo , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Animais , Sítios de Ligação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Genes Reporter , Óperon Lac , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional
6.
Nat Immunol ; 13(2): 144-51, 2011 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22101730

RESUMO

Innate lymphoid cells (ILCs) of the ILC22 type protect the intestinal mucosa from infection by secreting interleukin 22 (IL-22). ILC22 cells include NKp46(+) and lymphoid tissue-inducer (LTi)-like subsets that express the aryl hydrocarbon receptor (AHR). Here we found that Ahr(-/-) mice had a considerable deficit in ILC22 cells that resulted in less secretion of IL-22 and inadequate protection against intestinal bacterial infection. Ahr(-/-) mice also lacked postnatally 'imprinted' cryptopatches and isolated lymphoid follicles (ILFs), but not embryonically 'imprinted' Peyer's patches. AHR induced the transcription factor Notch, which was required for NKp46(+) ILCs, whereas LTi-like ILCs, cryptopatches and ILFs were partially dependent on Notch signaling. Thus, AHR was essential for ILC22 cells and postnatal intestinal lymphoid tissues. Moreover, ILC22 subsets were heterogeneous in their requirement for Notch and their effect on the generation of intestinal lymphoid tissues.


Assuntos
Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Antígenos Ly/metabolismo , Feminino , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/metabolismo , Interleucinas/genética , Interleucinas/imunologia , Interleucinas/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Transdução de Sinais/imunologia , Interleucina 22
7.
PLoS Biol ; 18(10): e3000850, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017398

RESUMO

Cooperative DNA binding is a key feature of transcriptional regulation. Here we examined the role of cooperativity in Notch signaling by CRISPR-mediated engineering of mice in which neither Notch1 nor Notch2 can homo- or heterodimerize, essential for cooperative binding to sequence-paired sites (SPS) located near many Notch-regulated genes. Although most known Notch-dependent phenotypes were unaffected in Notch1/2 dimer-deficient mice, a subset of tissues proved highly sensitive to loss of cooperativity. These phenotypes include heart development, compromised viability in combination with low gene dose, and the gut, developing ulcerative colitis in response to 1% dextran sulfate sodium (DSS). The most striking phenotypes-gender imbalance and splenic marginal zone B-cell lymphoma-emerged in combination with gene dose reduction or when challenged by chronic fur mite infestation. This study highlights the role of the environment in malignancy and colitis and is consistent with Notch-dependent anti-parasite immune responses being compromised in Notch dimer-deficient animals.


Assuntos
Linfócitos B/imunologia , Dosagem de Genes , Coração/embriologia , Homeostase , Intestinos/patologia , Infestações por Ácaros/imunologia , Receptores Notch/genética , Células-Tronco/patologia , Alelos , Animais , Sequência de Bases , Proliferação de Células , Cromatina/metabolismo , Sulfato de Dextrana , Ventrículos do Coração/embriologia , Ventrículos do Coração/patologia , Camundongos , Ácaros/fisiologia , Modelos Biológicos , Multimerização Proteica , Receptores Notch/metabolismo , Baço/imunologia , Esplenomegalia/imunologia , Esplenomegalia/parasitologia , Células-Tronco/metabolismo
8.
Mol Cell ; 59(4): 685-97, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26257285

RESUMO

We developed Split DamID (SpDamID), a protein complementation version of DamID, to mark genomic DNA bound in vivo by interacting or juxtapositioned transcription factors. Inactive halves of DAM (DNA adenine methyltransferase) were fused to protein pairs to be queried. Either direct interaction between proteins or proximity enabled DAM reconstitution and methylation of adenine in GATC. Inducible SpDamID was used to analyze Notch-mediated transcriptional activation. We demonstrate that Notch complexes label RBP sites broadly across the genome and show that a subset of these complexes that recruit MAML and p300 undergo changes in chromatin accessibility in response to Notch signaling. SpDamID differentiates between monomeric and dimeric binding, thereby allowing for identification of half-site motifs used by Notch dimers. Motif enrichment of Notch enhancers coupled with SpDamID reveals co-targeting of regulatory sequences by Notch and Runx1. SpDamID represents a sensitive and powerful tool that enables dynamic analysis of combinatorial protein-DNA transactions at a genome-wide level.


Assuntos
DNA/genética , Técnicas de Sonda Molecular , Receptores Notch/fisiologia , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , DNA/metabolismo , Elementos Facilitadores Genéticos , Camundongos Transgênicos , Dados de Sequência Molecular , Ligação Proteica
9.
J Allergy Clin Immunol ; 149(1): 79-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111451

RESUMO

BACKGROUND: Thymic stromal lymphopoietin (TSLP) is an epithelial-derived cytokine important in initiation of allergic inflammation. Single nucleotide polymorphisms (SNPs) in TSLP are associated with asthma, yet studies have shown inconsistent associations between circulating TSLP and asthma. Studies that integrate the combined effects of TSLP genotype, TSLP mRNA, circulating TSLP levels, and asthma outcome are lacking. OBJECTIVES: This study sought to recruit a novel cohort based on asthma-relevant TSLP SNPs and determine their impact on TSLP mRNA expression and TSLP circulating protein levels, and their individual and combined effects on asthma. METHODS: This study developed an algorithm to prioritize TSLP SNPs and recruited 51 carriers and noncarriers based on TSLP genotypes. TSLP mRNA was quantified in nasal epithelial cells and circulating TSLP levels in plasma. This study determined the associations of defined TSLP risk genotypes and/or TSLP mRNA and protein levels with asthma. RESULTS: TSLP mRNA expression, but not circulating TSLP, was significantly increased in people who are asthmatic compared with in people who are nonasthmatic (P = .007; odds ratio, 1.44). Notably, 90% of children with the defined TSLP risk genotypes and high nasal TSLP mRNA expression (top tertile) had asthma compared with 40% of subjects without risk genotypes and with low TSLP expression (bottom tertile) (P = .024). No association between circulating TSLP and asthma was observed. CONCLUSIONS: Collectively, these data suggest childhood asthma is modified by the combined effects of TSLP genotype and TSLP expression in the nasal epithelium. The increased asthma risk likely manifests when genetic variation enables expression quantitative trait loci in the TSLP locus to elevate TSLP. It is important to consider both biomarkers when factoring asthma risk.


Assuntos
Asma/genética , Citocinas/genética , Adolescente , Algoritmos , Asma/metabolismo , Criança , Citocinas/sangue , Citocinas/metabolismo , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Mucosa Nasal/metabolismo , Polimorfismo de Nucleotídeo Único , Risco , Linfopoietina do Estroma do Timo
10.
J Am Soc Nephrol ; 32(8): 1898-1912, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33958489

RESUMO

BACKGROUND: Low nephron number at birth is associated with a high risk of CKD in adulthood because nephrogenesis is completed in utero. Poor intrauterine environment impairs nephron endowment via an undefined molecular mechanism. A calorie-restricted diet (CRD) mouse model examined the effect of malnutrition during pregnancy on nephron progenitor cells (NPCs). METHODS: Daily caloric intake was reduced by 30% during pregnancy. mRNA expression, the cell cycle, and metabolic activity were evaluated in sorted Six2 NPCs. The results were validated using transgenic mice, oral nutrient supplementation, and organ cultures. RESULTS: Maternal CRD is associated with low nephron number in offspring, compromising kidney function at an older age. RNA-seq identified cell cycle regulators and the mTORC1 pathway, among other pathways, that maternal malnutrition in NPCs modifies. Metabolomics analysis of NPCs singled out the methionine pathway as crucial for NPC proliferation and maintenance. Methionine deprivation reduced NPC proliferation and lowered NPC number per tip in embryonic kidney cultures, with rescue from methionine metabolite supplementation. Importantly, in vivo, the negative effect of caloric restriction on nephrogenesis was prevented by adding methionine to the otherwise restricted diet during pregnancy or by removing one Tsc1 allele in NPCs. CONCLUSIONS: These findings show that mTORC1 signaling and methionine metabolism are central to the cellular and metabolic effects of malnutrition during pregnancy on NPCs, contributing to nephrogenesis and later, to kidney health in adulthood.


Assuntos
Desnutrição/fisiopatologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metionina/metabolismo , Néfrons/embriologia , Células-Tronco/metabolismo , Animais , Restrição Calórica , Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Expressão Gênica , Proteínas de Homeodomínio/genética , Desnutrição/metabolismo , Metabolômica , Metionina/administração & dosagem , Metionina/deficiência , Metionina/farmacologia , Camundongos , Camundongos Transgênicos , Néfrons/metabolismo , Néfrons/patologia , Técnicas de Cultura de Órgãos , Gravidez , RNA Mensageiro , RNA-Seq , Transdução de Sinais , Células-Tronco/fisiologia , Fatores de Transcrição/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética
11.
J Am Soc Nephrol ; 32(5): 1097-1112, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33789950

RESUMO

BACKGROUND: Most nephrons are added in late gestation. Truncated extrauterine nephrogenesis in premature infants results in fewer nephrons and significantly increased risk for CKD in adulthood. To overcome the ethical and technical difficulties associated with studies of late-gestation human fetal kidney development, third-trimester rhesus macaques served as a model to understand lateral branch nephrogenesis (LBN) at the molecular level. METHODS: Immunostaining and 3D rendering assessed morphology. Single-cell (sc) and single-nucleus (sn) RNA-Seq were performed on four cortically enriched fetal rhesus kidneys of 129-131 days gestational age (GA). An integrative bioinformatics strategy was applied across single-cell modalities, species, and time. RNAScope validation studies were performed on human archival tissue. RESULTS: Third-trimester rhesus kidney undergoes human-like LBN. scRNA-Seq of 23,608 cells revealed 37 transcriptionally distinct cell populations, including naïve nephron progenitor cells (NPCs), with the prior noted marker genes CITED1, MEOX1, and EYA1 (c25). These same populations and markers were reflected in snRNA-Seq of 5972 nuclei. Late-gestation rhesus NPC markers resembled late-gestation murine NPC, whereas early second-trimester human NPC markers aligned to midgestation murine NPCs. New, age-specific rhesus NPCs (SHISA8) and ureteric buds (POU3F4 and TWIST) predicted markers were verified in late-gestation human archival samples. CONCLUSIONS: Rhesus macaque is the first model of bona fide LBN, enabling molecular studies of late gestation, human-like nephrogenesis. These molecular findings support the hypothesis that aging nephron progenitors have a distinct molecular signature and align to their earlier human counterparts, with unique markers highlighting LBN-specific progenitor maturation.


Assuntos
Modelos Animais , Néfrons/embriologia , Organogênese/fisiologia , Animais , Feto/anatomia & histologia , Feto/embriologia , Feto/metabolismo , Idade Gestacional , Humanos , Macaca mulatta , Células-Tronco/fisiologia
12.
FASEB J ; 34(7): 9512-9530, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32474964

RESUMO

Alagille syndrome patients present with loss of function mutations in either JAG1 or NOTCH2. About 40%-50% of patients have kidney abnormalities, and frequently display multicystic, dysplastic kidneys. Additionally, gain-of-function mutations in NOTCH2 are associated with cystic kidneys in Hajdu-Cheney syndrome patients. How perturbations in Notch signaling cause renal tubular cysts remains unclear. Here, we have determined that reduced Notch signaling mediated transcription by ectopic expression of dominant-negative mastermind-like (dnMaml) peptide in the nephrogenic epithelia from after the s-shaped body formation and in the developing collecting ducts results in proximal tubular and collecting duct cysts, respectively. An acute inhibition of Notch signaling for two days during kidney development is sufficient to disrupt tubule formation, and significantly increases Akap12 expression. Ectopic expression of Akap12 in renal epithelia results in abnormally long primary cilia similar to that observed in Notch-signaling-deficient epithelia. Both loss of Notch signaling and elevated Akap12 expression disrupt the ability of renal epithelial cells to form spherical structures with a single lumen when grown embedded in matrix. Interestingly, Akap12 can inhibit Notch signaling mediated transcription, which likely explains how both loss of Notch signaling and ectopic expression of Akap12 result in similar renal epithelial abnormalities. We conclude that Notch signaling regulates Akap12 expression while also ensuring normal primary cilia length and renal epithelial morphogenesis, and suggest that one aspect of diseases associated with defective Notch signaling, such as Alagille syndrome, maybe mechanistically related to ciliopathies.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cílios/fisiologia , Regulação da Expressão Gênica , Túbulos Renais/citologia , Morfogênese , Proteínas Nucleares/fisiologia , Receptor Notch2/metabolismo , Fatores de Transcrição/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Animais , Proteínas de Ciclo Celular/genética , Feminino , Genes Dominantes , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Notch2/genética
13.
Proc Natl Acad Sci U S A ; 115(23): 5998-6003, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784808

RESUMO

Nephrogenesis concludes by the 36th week of gestation in humans and by the third day of postnatal life in mice. Extending the nephrogenic period may reduce the onset of adult renal and cardiovascular disease associated with low nephron numbers. We conditionally deleted either Mtor or Tsc1 (coding for hamartin, an inhibitor of Mtor) in renal progenitor cells. Loss of one Mtor allele caused a reduction in nephron numbers; complete deletion led to severe paucity of glomeruli in the kidney resulting in early death after birth. By contrast, loss of one Tsc1 allele from renal progenitors resulted in a 25% increase in nephron endowment with no adverse effects. Increased progenitor engraftment rates ex vivo relative to controls correlated with prolonged nephrogenesis through the fourth postnatal day. Complete loss of both Tsc1 alleles in renal progenitors led to a lethal tubular lesion. The hamartin phenotypes are not dependent on the inhibitory effect of TSC on the Mtor complex but are dependent on Raptor.


Assuntos
Néfrons , Organogênese/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Néfrons/química , Néfrons/citologia , Néfrons/crescimento & desenvolvimento , Néfrons/fisiologia , Serina-Treonina Quinases TOR/genética , Proteína 1 do Complexo Esclerose Tuberosa
15.
EMBO J ; 34(20): 2522-36, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26271103

RESUMO

The major signaling pathways regulating gastric stem cells are unknown. Here we report that Notch signaling is essential for homeostasis of LGR5(+) antral stem cells. Pathway inhibition reduced proliferation of gastric stem and progenitor cells, while activation increased proliferation. Notch dysregulation also altered differentiation, with inhibition inducing mucous and endocrine cell differentiation while activation reduced differentiation. Analysis of gastric organoids demonstrated that Notch signaling was intrinsic to the epithelium and regulated growth. Furthermore, in vivo Notch manipulation affected the efficiency of organoid initiation from glands and single Lgr5-GFP stem cells, suggesting regulation of stem cell function. Strikingly, constitutive Notch activation in LGR5(+) stem cells induced tissue expansion via antral gland fission. Lineage tracing using a multi-colored reporter demonstrated that Notch-activated stem cells rapidly generate monoclonal glands, suggesting a competitive advantage over unmanipulated stem cells. Notch activation was associated with increased mTOR signaling, and mTORC1 inhibition normalized NICD-induced increases in proliferation and gland fission. Chronic Notch activation induced undifferentiated, hyper-proliferative polyps, suggesting that aberrant activation of Notch in gastric stem cells may contribute to gastric tumorigenesis.


Assuntos
Homeostase/fisiologia , Antro Pilórico/citologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Análise de Variância , Animais , Pesos e Medidas Corporais , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Técnicas Histológicas , Hibridização In Situ , Camundongos , Microscopia Confocal , Antro Pilórico/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Serina-Treonina Quinases TOR/metabolismo
17.
Kidney Int ; 93(3): 589-598, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29217079

RESUMO

The regulation of final nephron number in the kidney is poorly understood. Cessation of nephron formation occurs when the self-renewing nephron progenitor population commits to differentiation. Transcription factors within this progenitor population, such as SIX2, are assumed to control expression of genes promoting self-renewal such that homozygous Six2 deletion results in premature commitment and an early halt to kidney development. In contrast, Six2 heterozygotes were assumed to be unaffected. Using quantitative morphometry, we found a paradoxical 18% increase in ureteric branching and final nephron number in Six2 heterozygotes, despite evidence for reduced levels of SIX2 protein and transcript. This was accompanied by a clear shift in nephron progenitor identity with a distinct subset of downregulated progenitor genes such as Cited1 and Meox1 while other genes were unaffected. The net result was an increase in nephron progenitor proliferation, as assessed by elevated EdU (5-ethynyl-2'-deoxyuridine) labeling, an increase in MYC protein, and transcriptional upregulation of MYC target genes. Heterozygosity for Six2 on an Fgf20-/- background resulted in premature differentiation of the progenitor population, confirming that progenitor regulation is compromised in Six2 heterozygotes. Overall, our studies reveal a unique dose response of nephron progenitors to the level of SIX2 protein in which the role of SIX2 in progenitor proliferation versus self-renewal is separable.


Assuntos
Proliferação de Células/genética , Autorrenovação Celular/genética , Haploinsuficiência , Proteínas de Homeodomínio/genética , Morfogênese/genética , Néfrons/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Animais , Proteínas Reguladoras de Apoptose , Fatores de Crescimento de Fibroblastos/deficiência , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Heterozigoto , Proteínas de Homeodomínio/metabolismo , Camundongos Knockout , Néfrons/embriologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/deficiência
18.
Angiogenesis ; 21(2): 335-347, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29397483

RESUMO

The principal function of glomeruli is to filter blood through a highly specialized filtration barrier consisting of a fenestrated endothelium, the glomerular basement membrane and podocyte foot processes. Previous studies have uncovered a crucial role of endothelial a disintegrin and metalloprotease 10 (ADAM10) and Notch signaling in the development of glomeruli, yet the resulting defects have not been further characterized nor understood in the context of kidney development. Here, we used several different experimental approaches to analyze the kidneys and glomeruli from mice lacking ADAM10 in endothelial cells (A10ΔEC mice). Scanning electron microscopy of glomerular casts demonstrated enlarged vascular diameter and increased intussusceptive events in A10ΔEC glomeruli compared to controls. Consistent with these findings, genes known to regulate vessel caliber (Apln, AplnR and Vegfr3) are significantly upregulated in A10ΔEC glomeruli. Moreover, transmission electron microscopy revealed the persistence of diaphragms in the fenestrae of A10ΔEC glomerular endothelial cells, which was corroborated by the elevated expression of the protein PLVAP/PV-1, an integral component of fenestral diaphragms. Analysis of gross renal vasculature by light sheet microscopy showed no major alteration of the branching pattern, indicating a localized importance of ADAM10 in the glomerular endothelium. Since intussusceptions and fenestrae with diaphragms are normally found in developing, but not mature glomeruli, our results provide the first evidence for a crucial role of endothelial ADAM10, a key regulator of Notch signaling, in promoting the development and maturation of the glomerular vasculature.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Células Endoteliais/metabolismo , Glomérulos Renais/metabolismo , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Endoteliais/ultraestrutura , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/ultraestrutura , Camundongos , Camundongos Transgênicos
19.
Development ; 142(14): 2452-63, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26062937

RESUMO

Although Notch1 and Notch2 are closely related paralogs and function through the same canonical signaling pathway, they contribute to different outcomes in some cell and disease contexts. To understand the basis for these differences, we examined in detail mice in which the Notch intracellular domains (N1ICD and N2ICD) were swapped. Our data indicate that strength (defined here as the ultimate number of intracellular domain molecules reaching the nucleus, integrating ligand-mediated release and nuclear translocation) and duration (half-life of NICD-RBPjk-MAML-DNA complexes, integrating cooperativity and stability dependent on shared sequence elements) are the factors that underlie many of the differences between Notch1 and Notch2 in all the contexts we examined, including T-cell development, skin differentiation and carcinogenesis, the inner ear, the lung and the retina. We were able to show that phenotypes in the heart, endothelium, and marginal zone B cells are attributed to haploinsufficiency but not to intracellular domain composition. Tissue-specific differences in NICD stability were most likely caused by alternative scissile bond choices by tissue-specific γ-secretase complexes following the intracellular domain swap. Reinterpretation of clinical findings based on our analyses suggests that differences in outcome segregating with Notch1 or Notch2 are likely to reflect outcomes dependent on the overall strength of Notch signals.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Alelos , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Carcinogênese , Diferenciação Celular , Separação Celular , Orelha Interna/embriologia , Feminino , Citometria de Fluxo , Cardiopatias Congênitas , Homozigoto , Pulmão/embriologia , Masculino , Camundongos , Fenótipo , Estrutura Terciária de Proteína , Retina/embriologia , Transdução de Sinais , Pele/embriologia , Neoplasias Cutâneas/metabolismo , Linfócitos T/citologia , Transcriptoma
20.
Development ; 142(6): 1193-202, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25725069

RESUMO

We have previously described the creation and analysis of a Notch1 activity-trap mouse line, Notch1 intramembrane proteolysis-Cre6MT or N1IP::Cre(LO), that marked cells experiencing relatively high levels of Notch1 activation. Here, we report and characterize a second line with improved sensitivity (N1IP::Cre(HI)) to mark cells experiencing lower levels of Notch1 activation. This improvement was achieved by increasing transcript stability and by restoring the native carboxy terminus of Cre, resulting in a five- to tenfold increase in Cre activity. The magnitude of this effect probably impacts Cre activity in strains with carboxy-terminal Ert2 fusion. These two trap lines and the related line N1IP::Cre(ERT2) form a complementary mapping tool kit to identify changes in Notch1 activation patterns in vivo as the consequence of genetic or pharmaceutical intervention, and illustrate the variation in Notch1 signal strength from one tissue to the next and across developmental time.


Assuntos
Linhagem Celular/fisiologia , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Linhagem Celular/metabolismo , Fibroblastos , Galactosídeos , Técnicas de Introdução de Genes , Imuno-Histoquímica , Indóis , Integrases/genética , Integrases/metabolismo , Camundongos , Receptor Notch1/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA