Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cardiovasc Pharmacol ; 68(5): 356-373, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27525575

RESUMO

This study focuses on characterization of the cardiac N-methyl D-aspartate receptors (NMDARs) as a target for endogenous and synthetic agonists and antagonists. Using isolated perfused rat hearts, we have shown that intracoronary administration of the NMDAR agonists and antagonists has a pronounced effect on autonomous heart function. Perfusion of rat hearts with autologous blood supplemented with NMDAR agonists was associated with induction of tachycardia, sinus arrhythmia, and ischemia occurring within physiological plasma concentration range for glutamate and glycine. Intracoronary administration of the NMDAR antagonists exerted an antiarrhythmic effect and resulted in bradycardia and improvement of capillary perfusion. Action of antagonists eliprodil, Ro25-6981, memantine, ketamine, and MK-801 on autonomous heart function diverged strikingly from that of L-type Ca channel blockers. Cardiac NMDAR subunit composition differed from that of neuronal receptors and was age specific and chamber specific. Transcripts of the GluN3A and GluN2D were found in all heart chambers, whereas expression of GluN1 and GluN2A and 2C was restricted to the atria. Expression of the GluN2B protein in ventricles increased markedly with age of the animals. The obtained data reveal that NMDARs are expressed in rat heart contributing to the autonomic heart rate regulation and the function of the cardiac conduction system.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Feminino , Coração/efeitos dos fármacos , Humanos , Masculino , Miócitos Cardíacos/metabolismo , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Front Cell Neurosci ; 12: 532, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687018

RESUMO

Exposure to hypobaric hypoxia at high altitude (above 2500 m asl) causes cognitive impairment, mostly attributed to changes in brain perfusion and consequently neuronal death. Enriched environment and voluntary exercise has been shown to improve cognitive function, to enhance brain microvasculature and neurogenesis, and to be neuroprotective. Here we show that high-altitude exposure (3540 m asl) of Long Evans rats during early adulthood (P48-P59) increases brain microvasculature and neurogenesis but impairs spatial and visual memory along with an increase in neuronal apoptosis. We tested whether enriched environment including a running wheel for voluntary exercise (EE) can prevent cognitive impairment at high-altitude and whether apoptosis is prevented. We found that EE retained spatial and visual memory at high altitude, and prevented neuronal apoptosis. Further, we tested whether vascular endothelial growth factor (VEGF) signaling is required for the EE-mediated recovery of spatial and visual memory and the reduction in apoptosis. Pharmacological inhibition of VEGF signaling by oral application of a tyrosine kinase inhibitor (Vandetanib) prevented the recovery of spatial and visual memory in animals housed in EE, along with an increase in apoptosis and a reduction in neurogenesis. Surprisingly, inhibition of VEGF signaling also caused impairment in spatial memory in EE-housed animals reared at low altitude, affecting mainly dentate gyrus microvasculature but not neurogenesis. We conclude that EE-mediated VEGF signaling is neuroprotective and essential for the maintenance of cognition and neurogenesis during high-altitude exposure, and for the maintenance of spatial memory at low altitude. Finally, our data also underlines the potential risk of cognitive impairment and disturbed high altitude adaption from the use of VEGF-signaling inhibitors for therapeutic purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA