Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Med Res ; 28(1): 418, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821950

RESUMO

BACKGROUND: Near-infrared spectroscopy (NIRS) provides regional tissue oxygenation (rSO2) even in pulseless states, such as out-of-hospital cardiac arrest (OHCA). Brain rSO2 seems to be important predictor of return of spontaneous circulation (ROSC) during cardiopulmonary resuscitation (CPR). Aim of our study was to explore feasibility for monitoring and detecting changes of skeletal muscle rSO2 during resuscitation. METHODS: Skeletal muscle and brain rSO2 were measured by NIRS (SenSmart Model X-100, Nonin, USA) during CPR in adult patient with OHCA. Start (basal) rSO2, maximal during CPR (maximal) and difference between maximal-minimal rSO2 (delta-rSO2), were recorded. Patients were divided into ROSC and NO-ROSC group. RESULTS: 20 patients [age: 66.0ys (60.5-79.5), 65% male] with OHCA [50% witnessed, 70% BLS, time to ALS 13.5 min (11.0-19.0)] were finally analyzed. ROSC was confirmed in 5 (25%) patients. Basal and maximal skeletal muscle rSO2 were higher in ROSC compared to NO-ROSC group [49.0% (39.7-53.7) vs. 15.0% (12.0-25.2), P = 0.006; 76.0% (52.7-80.5) vs. 34.0% (18.0-49.5), P = 0.005, respectively]. There was non-linear cubic relationship between time of collapse and basal skeletal muscle rSO2 in witnessed OHCA and without BLS (F-ratio = 9.7713, P = 0.0261). There was correlation between maximal skeletal muscle and brain rSO2 (n = 18, rho: 0.578, P = 0.0121). CONCLUSIONS: Recording of skeletal muscle rSO2 during CPR in patients with OHCA is feasible. Basal and maximal skeletal muscle rSO2 were higher in ROSC compared to NO-ROSC group. Clinical trial registration number ClinicalTrials.gov, NCT04058925, registered on: 16th August 2019. URL of trial registry record: https://www. CLINICALTRIALS: gov/ct2/show/NCT04058925?titles=Tissue+Oxygenation+During+Cardiopulmonary+Resuscitation+as+a+Predictor+of+Return+of+Spontaneous+Circulation&draw=2&rank=1 .


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca Extra-Hospitalar , Adulto , Humanos , Masculino , Idoso , Feminino , Reanimação Cardiopulmonar/métodos , Projetos Piloto , Retorno da Circulação Espontânea , Circulação Cerebrovascular/fisiologia , Parada Cardíaca Extra-Hospitalar/terapia
2.
Pract Lab Med ; 31: e00293, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35860388

RESUMO

Cardiac troponin I (cTnI) is a standard biomarker for the diagnosis of acute myocardial infarction (AMI). While older, ultra-sensitive cTnI (us-cTnI) assays use the 99th percentile as the reference threshold, newer high-sensitive cTnI (hs-cTnI) assays use the limit of detection or functional sensitivity instead. However, little has been done to systematically compare these two methods. The present study also served as a validation of hs-cTnI in our laboratory. Here, we compared the results obtained from the blood serum obtained from 8810 patients using the us-cTnI and the hs-cTnI assays run in tandem on the ADVIA Centaur XP analyser. We found that in 2279 samples the concentration of cTnI measured with the ultra-sensitive method was below the detection limit, while with the high-sensitive method, only 540 were below the detection limit. We also compared results from these assays with the ultimate diagnosis of a subset of individuals. The analysis of the results below cut-off with the ultra-sensitive method showed that this method would not detect 96 cases related to heart disorder. Overall, the main finding of our research is that hs-cTnI is the preferable option and is able to be deployed effectively in the laboratory setting.

4.
EJIFCC ; 28(2): 134-141, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28757821

RESUMO

Hydrogen sulfide (H2S) is a third known gasotransmitter. Most of the time it was knows as a poisonous gas. In last 30 years, we are seeing change in its perception. Scientists have discovered its major role in different organ systems. It is endogenously produced in various tissues and its production is influenced by many factors. In normal, physiological conditions only 20% of H2S is in its free form. The role of H2S is very wide. It acts as a signaling molecule, has influence on vascular tone, inflammatory response, scavenges reactive oxygen species, can be cytoprotective and can even reduce the extent of myocardial ischemia. Different studies have shown H2S has considerable influence in pathology of sepsis and its outcome. High free plasma levels of H2S are predictor of unfavorable outcome. Findings show that moderate free plasma levels of H2S have protective effect. Paradoxical very low free plasma levels of H2S, seen in patients with chronic heart failure, are also predictor of severity of disease and poor outcome. We presume that relationship between morbidity/mortality and concentration of H2S has a wide U-shape curve dependence. New researches with discovery of H2S agonists and antagonists could open new ways in understanding different pathologies and ability to treat them. Recent advances in the identification of H2S agonists and antagonists may help in forwarding our understanding of pathomechanisms and hence their treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA