Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Lipid Res ; 64(11): 100458, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37838304

RESUMO

Although pregnant women's fish consumption is beneficial for the brain development of the fetus due to the DHA in fish, seafood also contains methylmercury (MeHg), which adversely affects fetal brain development. Epidemiological studies suggest that high DHA levels in pregnant women's sera may protect the fetal brain from MeHg-induced neurotoxicity, but the underlying mechanism is unknown. Our earlier study revealed that DHA and its metabolite 19,20-dihydroxydocosapentaenoic acid (19,20-DHDP) produced by cytochrome P450s (P450s) and soluble epoxide hydrolase (sEH) can suppress MeHg-induced cytotoxicity in mouse primary neuronal cells. In the present study, DHA supplementation to pregnant mice suppressed MeHg-induced impairments of pups' body weight, grip strength, motor function, and short-term memory. DHA supplementation also suppressed MeHg-induced oxidative stress and the decrease in the number of subplate neurons in the cerebral cortex of the pups. DHA supplementation to dams significantly increased the DHA metabolites 19,20-epoxydocosapentaenoic acid (19,20-EDP) and 19,20-DHDP as well as DHA itself in the fetal and infant brains, although the expression levels of P450s and sEH were low in the fetal brain and liver. DHA metabolites were detected in the mouse breast milk and in human umbilical cord blood, indicating the active transfer of DHA metabolites from dams to pups. These results demonstrate that DHA supplementation increased DHA and its metabolites in the mouse pup brain and alleviated the effects of MeHg on fetal brain development. Pregnant women's intake of fish containing high levels of DHA (or DHA supplementation) may help prevent MeHg-induced neurotoxicity in the fetus.


Assuntos
Compostos de Metilmercúrio , Lactente , Animais , Humanos , Gravidez , Feminino , Camundongos , Compostos de Metilmercúrio/toxicidade , Ácidos Docosa-Hexaenoicos/farmacologia , Encéfalo , Estresse Oxidativo , Feto
2.
Biol Pharm Bull ; 46(2): 292-300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724957

RESUMO

Methylmercury (MeHg) is a well-known environmental pollutant that has harmful effects on the central nervous systems of humans and animals. The molecular mechanisms of MeHg-induced neurotoxicity at low concentrations are not fully understood. Here, we investigated the effects of low-concentration MeHg on the cell viability, Ca2+ homeostasis, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2 levels, which determine Ca2+ permeability of AMPA receptors, in rat primary cortical neurons. Exposure of cortical neurons to 100 and 300 nM MeHg for 7 d resulted in a decrease in GluA2 levels, an increase in basal intracellular Ca2+ concentration, increased phosphorylation levels of extracellular signal-regulated kinase (ERK)1/2 and p38, and decreased cell viability. Moreover, glutamate stimulation exacerbated the decrease in cell viability and increased intracellular Ca2+ levels in MeHg-treated neurons compared to control neurons. MeHg-induced neuronal cell death was ameliorated by 1-naphthyl acetyl spermine, a specific antagonist of Ca2+-permeable, GluA2-lacking AMPA receptors. Our findings raise the possibility that decreased neuronal GluA2 levels and the subsequent increase in intracellular Ca2+ concentration may contribute to MeHg-induced neurotoxicity.


Assuntos
Compostos de Metilmercúrio , Receptores de AMPA , Animais , Ratos , Cálcio/metabolismo , Células Cultivadas , Ácido Glutâmico/metabolismo , Homeostase , Compostos de Metilmercúrio/metabolismo , Neurônios , Receptores de AMPA/metabolismo
3.
Biochem Biophys Res Commun ; 592: 31-37, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35016149

RESUMO

Tributyltin (TBT) is an environmental pollutant that remains in marine sediments and is toxic to mammals. For example, TBT elicits neurotoxic and immunosuppressive effects on rats. However, it is not entirely understood how TBT causes toxicity. Autophagy plays a pivotal role in protein quality control and eliminates aggregated proteins and damaged organelles. We previously reported that TBT dephosphorylates mammalian target of rapamycin (mTOR), which may be involved in enhancement of autophagosome synthesis, in primary cultures of cortical neurons. Autophagosomes can accumulate due to enhancement of autophagosome synthesis or inhibition of autophagic degradation, and we did not clarify whether TBT alters autophagic flux. Here, we investigated the mechanism by which TBT causes accumulation of autophagosomes in SH-SY5Y cells. TBT inhibited autophagy without affecting autophagosome-lysosome fusion before it caused cell death. TBT dramatically decreased the acidity of lysosomes without affecting lysosomal membrane integrity. TBT decreased the mature protein level of cathepsin B, and this may be related to the decrease in lysosomal acidity. These results suggest that TBT inhibits autophagic degradation by decreasing lysosomal acidity. Autophagy impairment may be involved in the mechanism underlying neuronal death and/or T-cell-dependent thymus atrophy induced by TBT.


Assuntos
Autofagia , Lisossomos/metabolismo , Compostos de Trialquitina/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Hidrólise , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Lisossomos/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo
4.
Arch Biochem Biophys ; 715: 109099, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34856193

RESUMO

Xenobiotic-metabolizing enzymes (XMEs) expressed in the olfactory epithelium (OE) are known to metabolize odorants. Aldehyde oxidase (AOX) recognizes a wide range of substrates among which are substrates with aldehyde groups. Some of these AOX substrates are odorants, such as benzaldehyde and n-octanal. One of the mouse AOX isoforms, namely AOX2 (mAOX2), was shown to be specifically expressed in mouse OE but its role to metabolize odorants in this tissue remains unexplored. In this study, we investigated the involvement of mouse AOX isoforms in the oxidative metabolism of aldehyde-odorants in the OE. Mouse OE extracts effectively metabolized aromatic and aliphatic aldehyde-odorants. Gene expression analysis revealed that not only mAOX2 but also the mAOX3 isoform is expressed in the OE. Furthermore, evaluation of inhibitory effects using the purified recombinant enzymes led us to identify specific inhibitors of each isoform, namely chlorpromazine, 17ß-estradiol, menadione, norharmane, and raloxifene. Using these specific inhibitors, we defined the contribution of mAOX2 and mAOX3 to the metabolism of aldehyde-odorants in the mouse OE. Taken together, these findings demonstrate that mAOX2 and mAOX3 are responsible for the oxidation of aromatic and aliphatic aldehyde-odorants in the mouse OE, implying their involvement in odor perception.


Assuntos
Aldeído Oxidase/metabolismo , Aldeído Oxirredutases/metabolismo , Aldeídos/metabolismo , Odorantes , Mucosa Olfatória/metabolismo , Aldeído Oxidase/antagonistas & inibidores , Aldeído Oxirredutases/antagonistas & inibidores , Aldeídos/química , Animais , Inibidores Enzimáticos/farmacologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Mucosa Olfatória/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Olfato/efeitos dos fármacos
5.
Neurochem Res ; 46(9): 2285-2296, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34081246

RESUMO

It has been demonstrated that peripheral inflammation induces cognitive dysfunction. Several histone deacetylase (HDAC) inhibitors ameliorate cognitive dysfunction in animal models of not only peripheral inflammation but also Alzheimer's disease. However, it is not clear which HDAC expressed in the central nervous system or peripheral tissues is involved in the therapeutic effect of HDAC inhibition on cognitive dysfunction. Hence, the present study investigated the effect of peripheral HDAC inhibition on peripheral inflammation-induced cognitive dysfunction. Suberoylanilide hydroxamic acid (SAHA), a pan-HDAC inhibitor that is mainly distributed in peripheral tissues after intraperitoneal administration, was found to prevent peripheral inflammation-induced cognitive dysfunction. Moreover, pretreatment with SAHA dramatically increased mRNA expression of interleukin-10, an anti-inflammatory cytokine, in peripheral and central tissues and attenuated peripheral inflammation-induced microglial activation in the CA3 region of the hippocampus. Minocycline, a macrophage/microglia inhibitor, also ameliorated cognitive dysfunction. Furthermore, as a result of treatment with liposomal clodronate, depletion of peripheral macrophages partially ameliorated the peripheral inflammation-evoked cognitive dysfunction. Taken together, these findings demonstrate that inhibition of peripheral HDAC plays a critical role in preventing cognitive dysfunction induced by peripheral inflammation via the regulation of anti-inflammatory cytokine production and the inhibition of microglial functions in the hippocampus. Thus, these findings could provide support for inhibition of peripheral HDAC as a novel therapeutic strategy for inflammation-induced cognitive dysfunction.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Microglia/efeitos dos fármacos , Vorinostat/uso terapêutico , Animais , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Citocinas/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inflamação/induzido quimicamente , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos , Masculino , Camundongos , Microglia/metabolismo
6.
Biochem Biophys Res Commun ; 509(1): 287-293, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30587336

RESUMO

Cytochrome P450 (CYP) 3A4 plays an important role in drug metabolism. Although transcriptional regulation of CYP3A expression by chemicals has been comprehensively studied, its post-translational regulation is not fully understood. We previously reported that acetaminophen (APAP) caused accumulation of functional CYP3A protein via inhibition of CYP3A protein degradation through reduction of glycoprotein 78 (gp78), an E3 ligase of the ubiquitin proteasome system. Furthermore, N-acetyl-m-aminophenol, a regioisomer of APAP causes CYP3A protein accumulation, whereas p-acetamidobezoic acid, in which a hydroxy group of APAP was substituted for a carboxy group, did not lead to the same effects. However, the mechanism underlying the reduction of gp78 protein expression by APAP has not yet been elucidated. In this study, we selected 32 compounds including a phenolic hydroxyl group such as APAP and explored the compounds that increased CYP3A enzyme activity to analyze their common mechanism. Four compounds, including salicylate, increased CYP3A enzyme activity and led to the accumulation of functional CYP3A protein similarly to APAP. APAP and salicylate activate p38 mitogen-activated protein kinase (p38 MAPK). gp78 is known to be phosphorylated by p38 MAPK; so, we investigated the relationship between p38 MAPK and CYP3A. APAP activated p38 MAPK, decreased gp78 protein expression, and subsequently induced CYP3A protein expression in a time-dependent manner. When SB203580, a p38 MAPK inhibitor, was co-administered with APAP, the inhibitory effects of APAP on CYP3A protein degradation were suppressed. In this study, we demonstrated the involvement of the p38 MAPK-gp78 pathway in suppressing CYP3A protein degradation by APAP. Salicylate derivatives may also suppress the CYP3A protein degradation.


Assuntos
Acetaminofen/farmacologia , Analgésicos não Narcóticos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Citocromo P-450 CYP3A/metabolismo , Salicilatos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Proteólise/efeitos dos fármacos , Ratos Sprague-Dawley
7.
Toxicol Appl Pharmacol ; 370: 133-144, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30880217

RESUMO

Liver resection is performed to remove tumors in patients with liver cancer, but the procedure's suitability depends on the regenerative ability of the liver. It is important to consider the effects of exogenous factors, such as diets, on liver regeneration for the recovery of function. The evaluation of drug metabolism during liver regeneration is also necessary because liver dysfunction is generally observed after the operation. Here, we investigated the influence of a purified diet (AIN-93G) on liver regeneration and changes in the mRNA expression of several cytochrome P450 (CYP) isoforms in the liver and small intestine using a two-thirds partial hepatectomy (PH) mouse model fed with a standard diet (MF) and a purified diet. Liver regeneration was significantly delayed in the purified diet group relative to that in the standard diet group. The liver Cyp2c55 and Cyp3a11 expression was increased at 3 day after PH especially in the purified diet group. Bile acid may partly cause the differences in liver regeneration and CYP expression between two types of diets. On the other hand, Cyp3a13 expression in the small intestine was transiently increased at day 1 after PH in both diet groups. The findings suggest that compensatory induction of the CYP expression occurred in the small intestine after attenuation of drug metabolism potential in the liver. The present results highlight the importance of the relationship between liver regeneration, drug metabolism, and exogenous factors for the effective treatment, including surgery and medication, in patients after liver resection or transplantation.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Dieta , Hepatectomia , Intestinos/enzimologia , Regeneração Hepática/fisiologia , Fígado/enzimologia , Animais , Ácidos e Sais Biliares/sangue , Citocromo P-450 CYP3A/genética , Expressão Gênica , Isoenzimas/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/análise
8.
Biol Pharm Bull ; 42(8): 1366-1375, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31366871

RESUMO

Drug-induced liver injury (DILI) is a common side effect of several medications and is considered a major factor responsible for the discontinuation of drugs during their development. Cholestasis is a DILI that results from impairment of bile acid transporters, such as the bile salt export pump (BSEP), leading to accumulation of bile acids. Both in vitro and in vivo studies are required to predict the risk of drug-induced cholestasis. In the present study, we used chimeric mice with humanized liver as a model to study drug-induced cholestasis. Administration of a single dose of ketoconazole or rifampicin, known to potentially cause cholestasis by inhibiting BSEP, did not result in elevated levels of alkaline phosphatase (ALP), which are known hepatic biomarkers. The concentration of taurodeoxycholic acid increased in the liver after ketoconazole administration, whereas rifampicin resulted in increased tauromuricholic acid and taurocholic acid (TCA) levels in the liver and plasma. Furthermore, rifampicin resulted in an increase in the uniform distribution of a compound with m/z 514.3, presumed as TCA through imaging mass spectrometry. The mRNA levels of bile acid-related genes were also altered after treatment with ketoconazole or rifampicin. We believe these observations to be a part of a feedback mechanism to decrease bile acid concentrations. The changes in bile acid concentrations results may reflect the initial responses of the human body to cholestasis. Furthermore, these findings may contribute to the screening of drug candidates, thereby avoiding drug-induced cholestasis during clinical trials and drug development.


Assuntos
Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colestase/metabolismo , Cetoconazol/efeitos adversos , Fígado/efeitos dos fármacos , Rifampina/efeitos adversos , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Animais , Aspartato Aminotransferases/sangue , Ácidos e Sais Biliares/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Colestase/sangue , Colestase/induzido quimicamente , Humanos , Cetoconazol/sangue , Cetoconazol/farmacocinética , Fígado/metabolismo , Masculino , Camundongos , Rifampina/sangue , Rifampina/farmacocinética
9.
Arch Toxicol ; 92(1): 401-409, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28725974

RESUMO

Glutamate receptor 2 (GluA2/GluR2) is one of the four subunits of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR); an increase in GluA2-lacking AMPARs contributes to neuronal vulnerability to excitotoxicity because of the receptor's high Ca2+ permeability. Carbofuran is a carbamate pesticide used in agricultural areas to increase crop productivity. Due to its broad-spectrum action, carbofuran has also been used as an insecticide, nematicide, and acaricide. In this study, we investigated the effect of carbofuran on GluA2 protein expression. The 9-day treatment of rat primary cortical neurons with 1 µM and 10 µM carbofuran decreased GluA2 protein expression, but not that of GluA1, GluA3, or GluA4 (i.e., other AMPAR subunits). Decreased GluA2 protein expression was also observed on the cell surface membrane of 10 µM carbofuran-treated neurons, and these neurons showed an increase in 25 µM glutamate-triggered Ca2+ influx. Treatment with 50 µM glutamate, which did not affect the viability of control neurons, significantly decreased the viability of 10 µM carbofuran-treated neurons, and this effect was abolished by pre-treatment with 300 µM 1-naphthylacetylspermine, an antagonist of GluA2-lacking AMPAR. At a concentration of 100 µM, but not 1 or 10 µM, carbofuran significantly decreased acetylcholine esterase activity, a well-known target of this chemical. These results suggest that carbofuran decreases GluA2 protein expression and increases neuronal vulnerability to glutamate toxicity at concentrations that do not affect acetylcholine esterase activity.


Assuntos
Carbofurano/toxicidade , Córtex Cerebral/citologia , Ácido Glutâmico/toxicidade , Neurônios/efeitos dos fármacos , Receptores de AMPA/metabolismo , Acetilcolinesterase/metabolismo , Animais , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Córtex Cerebral/embriologia , Inibidores da Colinesterase/toxicidade , Feminino , Proteínas Ligadas por GPI/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/metabolismo , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Gravidez , Ratos Wistar , Espermina/análogos & derivados , Espermina/farmacologia
10.
Biochem Biophys Res Commun ; 486(3): 639-644, 2017 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-28341123

RESUMO

Cytochrome P450 (CYP) 3A subfamily members are known to metabolize various types of drugs, highlighting the importance of understanding drug-drug interactions (DDI) depending on CYP3A induction or inhibition. While transcriptional regulation of CYP3A members is widely understood, post-translational regulation needs to be elucidated. We previously reported that acetaminophen (APAP) induces CYP3A activity via inhibition of protein degradation and proposed a novel DDI concept. N-Acetyl-p-benzoquinone imine (NAPQI), the reactive metabolite of APAP formed by CYP, is known to cause adverse events related to depletion of intracellular reduced glutathione (GSH). We aimed to inspect whether NAPQI rather than APAP itself could cause the inhibitory effects on protein degradation. We found that N-acetyl-l-cysteine, the precursor of GSH, and 1-aminobenzotriazole, a nonselective CYP inhibitor, had no effect on CYP3A1/23 protein levels affected by APAP. Thus, we used APAP analogs to test CYP3A1/23 mRNA levels, protein levels, and CYP3A activity. We found N-acetyl-m-aminophenol (AMAP), a regioisomer of APAP, has the same inhibitory effects of CYP3A1/23 protein degradation, while p-acetamidobenzoic acid (PAcBA), a carboxy-substituted form of APAP, shows no inhibitory effects. AMAP and PAcBA cannot be oxidized to quinone imine forms such as NAPQI, so the inhibitory effects could depend on the specific chemical structure of APAP.


Assuntos
Acetaminofen/farmacologia , Benzoquinonas/farmacologia , Indutores do Citocromo P-450 CYP3A/farmacologia , Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/genética , Hepatócitos/efeitos dos fármacos , Iminas/farmacologia , Acetaminofen/metabolismo , Acetilcisteína/farmacologia , Animais , Benzoquinonas/metabolismo , Citocromo P-450 CYP3A/metabolismo , Indutores do Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/metabolismo , Regulação da Expressão Gênica , Glutationa/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Iminas/metabolismo , Masculino , Cultura Primária de Células , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Relação Estrutura-Atividade , Triazóis/farmacologia
11.
Biol Pharm Bull ; 40(3): 303-309, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28250271

RESUMO

Lead is a persistent environmental pollutant and exposure to high environmental levels causes various deleterious toxicities, especially to the central nervous system (CNS). The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor that is devoid of the glutamate receptor 2 (GluR2) subunit is Ca2+-permeable, which increases the neuronal vulnerability to excitotoxicity. We have previously reported that long-term exposure of rat cortical neurons to lead acetate induces decrease of GluR2 expression. However, it is not clarified whether lead-induced GluR2 decrease is involved in neurotoxicity. Therefore, we investigated the contribution of GluR2 non-containing AMPA receptor to lead-induced neurotoxic events. Although the expression of four AMPA receptor subunits (GluR1, GluR2, GluR3, and GluR4) was decreased by lead exposure, the decrease in GluR2 expression was remarkable among four subunits. Lead-induced neuronal cell death was rescued by three glutamate receptor antagonists, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, a non-selective AMPA receptor blocker), MK-801 (N-methyl-D-aspartate (NMDA) receptor blocker), and 1-naphthyl acetyl spermine (NAS, a specific Ca2+-permeable AMPA receptor blocker). Lead exposure activated extracellular signal-regulated protein kinase (ERK) 1/2, which was significantly ameliorated by CNQX. In addition, lead exposure activated p38 mitogen-activated protein kinase (MAPK p38), and protein kinase C (PKC), which was partially ameliorated by CNQX. Our findings indicate that Ca2+-permeable AMPA receptors resulting from GluR2 decrease may be involved in lead-induced neurotoxicity.


Assuntos
Encéfalo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ácido Glutâmico/metabolismo , Intoxicação do Sistema Nervoso por Chumbo/metabolismo , Chumbo/efeitos adversos , Receptores de AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Encéfalo/citologia , Cálcio/metabolismo , Células Cultivadas , Poluentes Ambientais/efeitos adversos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Subunidades Proteicas , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Biol Pharm Bull ; 40(7): 1121-1124, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28674256

RESUMO

Tributyltin (TBT), a common environmental contaminant, is widely used as an antifouling agent in paint. We previously reported that exposure of primary cortical neurons to TBT in vitro decreased the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit glutamate receptor 2 (GluR2) expression and subsequently increased neuronal vulnerability to glutamate. Therefore, to identify whether GluR2 expression also decreases after TBT exposure in vivo, we evaluated the changes in GluR2 expression in the mouse brain after prenatal or postnatal exposure to 10 and 25 ppm TBT through pellet diets. Although the mean feed intake and body weight did not decrease in TBT-exposed mice compared with that in control mice, GluR2 expression in the cerebral cortex and hippocampus decreased after TBT exposure during the prenatal period. These results indicate that a decrease in neuronal GluR2 may be involved in TBT-induced neurotoxicity, especially during the fetal period.


Assuntos
Encéfalo/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Receptores de AMPA/metabolismo , Compostos de Trialquitina/toxicidade , Animais , Peso Corporal , Encéfalo/metabolismo , Comportamento Alimentar , Feminino , Camundongos , Gravidez
13.
Arch Toxicol ; 91(2): 885-895, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27155986

RESUMO

Perfluorooctane sulfonate (PFOS) is a persistent environmental contaminant. Although studies have described PFOS-induced neurotoxicity in animal brains and neuronal cells, the molecular mechanisms of PFOS-induced neurotoxicity based on the distribution properties, especially during developmental periods, have not been clarified. To clarify the mechanisms of PFOS-induced neuronal vulnerability during developmental periods, we examined changes in glutamate receptor 2 (GluR2) expression and related neurotoxicity in PFOS-treated primary cortical neurons and neonatal rat brains. Exposure of cortical neurons to 1 µM PFOS for 9 days resulted in decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR2 expression, which subsequently enhanced vulnerability to glutamate by increasing intracellular Ca2+ concentrations. The brain-plasma ratio of PFOS in pups was approximately five times higher than that in dams, although there were no differences in liver-plasma ratio between dams and pups. GluR2 expression in pup cerebral cortex decreased after exposure to 2.0 mg/kg PFOS, and kainic acid induced histopathological abnormalities in PFOS-exposed pups. Our findings suggest that decreased neuronal GluR2 expression is involved in PFOS-induced neurotoxicity, especially during the fetal and neonatal periods.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Neurônios/efeitos dos fármacos , Receptores de AMPA/metabolismo , Administração Oral , Ácidos Alcanossulfônicos/administração & dosagem , Ácidos Alcanossulfônicos/farmacocinética , Animais , Animais Recém-Nascidos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/embriologia , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Fluorocarbonos/administração & dosagem , Fluorocarbonos/farmacocinética , Ácido Caínico/farmacologia , Neurônios/metabolismo , Neurônios/patologia , Gravidez , Ratos Wistar , Receptores de AMPA/genética , Distribuição Tecidual
14.
Int J Mol Sci ; 18(8)2017 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-28800112

RESUMO

Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 (GluR2) expression in cortical neurons and enhances neuronal vulnerability to glutamate. However, the mechanism of this TBT-induced GluR2 decrease remains unknown. Therefore, we examined the effects of TBT on the activity of transcription factors that control GluR2 expression. Exposure of primary cortical neurons to 20 nM TBT for 3 h to 9 days resulted in a decrease in GluR2 mRNA expression. Moreover, TBT inhibited the DNA binding activity of nuclear respiratory factor-1 (NRF-1), a transcription factor that positively regulates the GluR2. This result indicates that TBT inhibits the activity of NRF-1 and subsequently decreases GluR2 expression. In addition, 20 nM TBT decreased the expression of genes such as cytochrome c, cytochrome c oxidase (COX) 4, and COX 6c, which are downstream of NRF-1. Our results suggest that NRF-1 inhibition is an important molecular action of the neurotoxicity induced by low-concentration TBT.


Assuntos
Poluentes Ambientais/toxicidade , Fator 1 Relacionado a NF-E2/metabolismo , Neurônios/efeitos dos fármacos , Receptores de AMPA/metabolismo , Compostos de Trialquitina/toxicidade , Animais , Células Cultivadas , Poluentes Ambientais/farmacologia , Células HEK293 , Humanos , Fator 1 Relacionado a NF-E2/genética , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Receptores de AMPA/genética , Compostos de Trialquitina/farmacologia
15.
J Neurochem ; 139(2): 294-308, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27309572

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, but its underlying cause remains unknown. Although recent studies using PD-related neurotoxin MPP+ suggest autophagy involvement in the pathogenesis of PD, the effect of MPP+ on autophagic processes under mild exposure, which mimics the slow progressive nature of PD, remains largely unclear. We examined the effect of mild MPP+ exposure (10 and 200 µM for 48 h), which induces a more slowly developing cell death, on autophagic processes and the mechanistic differences with acute MPP+ toxicity (2.5 and 5 mM for 24 h). In SH-SY5Y cells, mild MPP+ exposure predominantly inhibited autophagosome degradation, whereas acute MPP+ exposure inhibited both autophagosome degradation and basal autophagy. Mild MPP+ exposure reduced lysosomal hydrolase cathepsin D activity without changing lysosomal acidity, whereas acute exposure decreased lysosomal density. Lysosome biogenesis enhancers trehalose and rapamycin partially alleviated mild MPP+ exposure induced impaired autophagosome degradation and cell death, but did not prevent the pathogenic response to acute MPP+ exposure, suggesting irreversible lysosomal damage. We demonstrated impaired autophagic degradation by MPP+ exposure and mechanistic differences between mild and acute MPP+ toxicities. Mild MPP+ toxicity impaired autophagosome degradation through novel lysosomal acidity-independent mechanisms. Sustained mild lysosomal damage may contribute to PD. We examined the effects of MPP+ on autophagic processes under mild exposure, which mimics the slow progressive nature of Parkinson's disease, in SH-SY5Y cells. This study demonstrated impaired autophagic degradation through a reduction in lysosomal cathepsin D activity without altering lysosomal acidity by mild MPP+ exposure. Mechanistic differences between acute and mild MPP+ toxicity were also observed. Sustained mild damage of lysosome may be an underlying cause of Parkinson's disease. Cover Image for this issue: doi: 10.1111/jnc.13338.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Autofagia/efeitos dos fármacos , Dopaminérgicos/toxicidade , Lisossomos/efeitos dos fármacos , 1-Metil-4-fenilpiridínio/antagonistas & inibidores , Ácidos , Catepsina D/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia , Fagossomos/efeitos dos fármacos , Sirolimo/farmacologia , Trealose/farmacologia
16.
Biosci Biotechnol Biochem ; 80(6): 1164-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26967711

RESUMO

Serum is an important component of cell culture media. The present study demonstrates contamination of intracellular protein extract by bovine serum albumin from the culture media and illustrates how this contamination can cause the misinterpretation of western blot results. Preliminary experiments can prevent the misinterpretation of some experimental results, and optimization of the washing process may enable specific protein detection.


Assuntos
Artefatos , Proteínas Sanguíneas/análise , Extração Líquido-Líquido/métodos , Soroalbumina Bovina/análise , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Western Blotting , Misturas Complexas/química , Meios de Cultura , Eletroforese em Gel Bidimensional , Expressão Gênica , Células HEK293 , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
17.
Xenobiotica ; 45(7): 605-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25733030

RESUMO

1. We used chimeric mice (PXB mice®), which were repopulated with human hepatocytes, to evaluate their predictabilities of human pharmacokinetics. 2. The relationships of total clearance (CLt) and the volume of distribution at steady state (Vdss) between that predicted from single-species allometric scaling (SSS) of PXB mice and the observed human values indicated good correlations for various drugs metabolized by cytochrome P450s (CYPs) and non-CYPs. 3. We examined the Dedrick plot with which the plasma concentration-time curves can exhibit superimposability using SSS of PXB mice for CLt and Vdss. The predicted plasma concentration-time curves using the complex Dedrick plot from PXB mice were generally superimposed with the observed human data. 4. However, the predicted curve of diazepam was not superimposable with the observed profile. Residual mouse hepatocytes in the livers of PXB mice may affect predictability of CLt of diazepam because significant discrepancy of in vitro intrinsic clearance in PXB mouse liver microsomes consisted of low and high replacement of human hepatocytes were observed. 5. The complex Dedrick plot with SSS from PXB mice is useful for predicting the plasma concentration-time curve in drug discovery, although there are some limitations.


Assuntos
Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/metabolismo , Animais , Pré-Escolar , Quimera , Humanos , Fígado , Masculino , Camundongos , Especificidade da Espécie , Fatores de Tempo
18.
J Neurochem ; 130(6): 826-38, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24832624

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disease, but its pathogenesis remains elusive. A mutation in ubiquitin C-terminal hydrolase L1 (UCH-L1) is responsible for a form of genetic PD which strongly resembles the idiopathic PD. We previously showed that 1-(3',4'-dihydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline (3',4'DHBnTIQ) is an endogenous parkinsonism-inducing dopamine derivative. Here, we investigated the interaction between 3',4'DHBnTIQ and UCH-L1 and its possible role in the pathogenesis of idiopathic PD. Our results indicate that 3',4'DHBnTIQ binds to UCH-L1 specifically at Cys152 in vitro. In addition, 3',4'DHBnTIQ treatment increased the amount of UCH-L1 in the insoluble fraction of SH-SY5Y cells and inhibited its hydrolase activity to 60%, reducing the level of ubiquitin in the soluble fraction of SH-SY5Y cells. Catechol-modified UCH-L1 as well as insoluble UCH-L1 were detected in the midbrain of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated PD model mice. Structurally as well as functionally altered UCH-L1 have been detected in the brains of patients with idiopathic PD. We suggest that conjugation of UCH-L1 by neurotoxic endogenous compounds such as 3',4'DHBnTIQ might play a key role in onset and progression of idiopathic PD. We investigated the interaction between ubiquitin C-terminal hydrolase L1 (UCH-L1) and the brain endogenous parkinsonism inducer 1-(3',4'-dihydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline (3',4'DHBnTIQ). Our results indicate that 3',4'DHBnTIQ binds to UCH-L1 specifically at cysteine 152 and induces its aggregation. 3',4'DHBnTIQ also inhibits the hydrolase activity of UCH-L1. Catechol-modified as well as insoluble UCH-L1 were detected in the midbrains of MPTP-treated Parkinson's disease (PD) model mice. Conjugation of UCH-L1 by neurotoxic endogenous compounds like 3',4'DHBnTIQ might play a key role in onset and progression of PD.


Assuntos
Dopamina/análogos & derivados , Dopamina/metabolismo , Neurotoxinas/metabolismo , Doença de Parkinson/metabolismo , Tretoquinol/análogos & derivados , Ubiquitina Tiolesterase/metabolismo , Animais , Western Blotting , Catecóis/química , Catecóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Eletroforese em Gel de Ágar , Escherichia coli/metabolismo , Humanos , Indicadores e Reagentes , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tretoquinol/metabolismo , Tretoquinol/farmacologia , Ubiquitina Tiolesterase/química
19.
FEBS Lett ; 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034140

RESUMO

Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has epoxide hydrolase activity and phosphatase activity. Our earlier study revealed that lysophosphatidic acids are a substrate of the phosphatase activity of sEH in vitro, but its physiological function remained unknown. Herein, we used the CRISPR/Cas9 system and i-GONAD method to generate mice that are deficient in sEH phosphatase activity. In the mouse brain, sEH was highly expressed in the olfactory bulb. Deletion of the sEH phosphatase activity resulted in decreased levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), which is a dephosphorylated form of 2-arachidonoyl-lysophosphatidic acid in the olfactory bulb. The sEH-deficient mice showed depressive-like behavior. These results indicate that sEH can regulate the production of 2-AG and brain function in vivo.

20.
Toxicol Appl Pharmacol ; 272(1): 137-46, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23743301

RESUMO

Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca(2+) signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca(2+) homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca(2+) depletion, and to test this idea, we examined the effect of TBT on intracellular Ca(2+) concentration using fura-2 AM, a Ca(2+) fluorescent probe. TBT increased intracellular Ca(2+) concentration in a TBT-concentration-dependent manner, and Ca(2+) increase in 700nM TBT was mainly blocked by 50µM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca(2+) concentration by releasing Ca(2+) from ER, thereby causing ER stress.


Assuntos
Cálcio/fisiologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Compostos de Trialquitina/toxicidade , Western Blotting , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Dantroleno/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Humanos , Análise em Microsséries , Relaxantes Musculares Centrais/farmacologia , Reação em Cadeia da Polimerase , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA