Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Biol Chem ; 295(38): 13393-13406, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32732285

RESUMO

Lysocardiolipin acyltransferase (LYCAT), a cardiolipin (CL)-remodeling enzyme, is crucial for maintaining normal mitochondrial function and vascular development. Despite the well-characterized role for LYCAT in the regulation of mitochondrial dynamics, its involvement in lung cancer, if any, remains incompletely understood. In this study, in silico analysis of TCGA lung cancer data sets revealed a significant increase in LYCAT expression, which was later corroborated in human lung cancer tissues and immortalized lung cancer cell lines via indirect immunofluorescence and immunoblotting, respectively. Stable knockdown of LYCAT in NSCLC cell lines not only reduced CL and increased monolyso-CL levels but also reduced in vivo tumor growth, as determined by xenograft studies in athymic nude mice. Furthermore, blocking LYCAT activity using a LYCAT mimetic peptide attenuated cell migration, suggesting a novel role for LYCAT activity in promoting NSCLC. Mechanistically, the pro-proliferative effects of LYCAT were mediated by an increase in mitochondrial fusion and a G1/S cell cycle transition, both of which are linked to increased cell proliferation. Taken together, these results demonstrate a novel role for LYCAT in promoting NSCLC and suggest that targeting LYCAT expression or activity in NSCLC may provide new avenues for the therapeutic treatment of lung cancer.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Proliferação de Células , Neoplasias Pulmonares/enzimologia , Mitocôndrias/metabolismo , Proteínas de Neoplasias/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Cardiolipinas/genética , Cardiolipinas/metabolismo , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Mitocôndrias/genética , Proteínas de Neoplasias/genética , Transplante de Neoplasias
2.
Am J Respir Crit Care Med ; 189(11): 1402-15, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24779708

RESUMO

RATIONALE: Lysocardiolipin acyltransferase (LYCAT), a cardiolipin-remodeling enzyme regulating the 18:2 linoleic acid pattern of mammalian mitochondrial cardiolipin, is necessary for maintaining normal mitochondrial function and vascular development. We hypothesized that modulation of LYCAT expression in lung epithelium regulates development of pulmonary fibrosis. OBJECTIVES: To define a role for LYCAT in human and murine models of pulmonary fibrosis. METHODS: We analyzed the correlation of LYCAT expression in peripheral blood mononuclear cells (PBMCs) with the outcomes of pulmonary functions and overall survival, and used the murine models to establish the role of LYCAT in fibrogenesis. We studied the LYCAT action on cardiolipin remodeling, mitochondrial reactive oxygen species generation, and apoptosis of alveolar epithelial cells under bleomycin challenge. MEASUREMENTS AND MAIN RESULTS: LYCAT expression was significantly altered in PBMCs and lung tissues from patients with idiopathic pulmonary fibrosis (IPF), which was confirmed in two preclinical murine models of IPF, bleomycin- and radiation-induced pulmonary fibrosis. LYCAT mRNA expression in PBMCs directly and significantly correlated with carbon monoxide diffusion capacity, pulmonary function outcomes, and overall survival. In both bleomycin- and radiation-induced pulmonary fibrosis murine models, hLYCAT overexpression reduced several indices of lung fibrosis, whereas down-regulation of native LYCAT expression by siRNA accentuated fibrogenesis. In vitro studies demonstrated that LYCAT modulated bleomycin-induced cardiolipin remodeling, mitochondrial membrane potential, reactive oxygen species generation, and apoptosis of alveolar epithelial cells, potential mechanisms of LYCAT-mediated lung protection. CONCLUSIONS: This study is the first to identify modulation of LYCAT expression in fibrotic lungs and offers a novel therapeutic approach for ameliorating lung inflammation and pulmonary fibrosis.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Aciltransferases/genética , Mitocôndrias/genética , Fibrose Pulmonar/diagnóstico , Fibrose Pulmonar/genética , Animais , Biomarcadores/metabolismo , Cardiolipinas/genética , Estudos de Coortes , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/genética , Hibridização In Situ , Leucócitos Mononucleares/metabolismo , Camundongos , Mitocôndrias/metabolismo , Valor Preditivo dos Testes , Fibrose Pulmonar/enzimologia , RNA Mensageiro/metabolismo , Sensibilidade e Especificidade , Índice de Gravidade de Doença
3.
Mol Cell Biochem ; 386(1-2): 233-49, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24307101

RESUMO

Diabetic cardiomyopathy and heart failure have been recognized as the leading causes of mortality among diabetics. Diabetic cardiomyopathy has been characterized primarily by the manifestation of left ventricular dysfunction that is independent of coronary artery disease and hypertension among the patients affected by diabetes mellitus. A complex array of contributing factors including the hypertrophy of left ventricle, alterations of metabolism, microvascular pathology, insulin resistance, fibrosis, apoptotic cell death, and oxidative stress have been implicated in the pathogenesis of diabetic cardiomyopathy. Nevertheless, the exact mechanisms underlying the pathogenesis of diabetic cardiomyopathy are yet to be established. The critical involvement of multifarious factors including the vascular endothelial dysfunction, microangiopathy, reactive oxygen species (ROS), oxidative stress, mitochondrial dysfunction has been identified in the mechanism of pathogenesis of diabetic cardiomyopathy. Although it is difficult to establish how each factor contributes to disease, the involvement of ROS and mitochondrial dysfunction are emerging as front-runners in the mechanism of pathogenesis of diabetic cardiomyopathy. This review highlights the role of vascular endothelial dysfunction, ROS, oxidative stress, and mitochondriopathy in the pathogenesis of diabetic cardiomyopathy. Furthermore, the review emphasizes that the puzzle has to be solved to firmly establish the mitochondrial and/or ROS mechanism(s) by identifying their most critical molecular players involved at both spatial and temporal levels in diabetic cardiomyopathy as targets for specific and effective pharmacological/therapeutic interventions.


Assuntos
Cardiomiopatias Diabéticas/etiologia , Endotélio Vascular/fisiopatologia , Mitocôndrias Cardíacas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Humanos
4.
Indian J Biochem Biophys ; 50(5): 387-401, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24772960

RESUMO

The purpose of this study was to elucidate the mechanism of the airborne poultry dust (particulate matter, PM)-induced respiratory tract inflammation, a common symptom in agricultural respiratory diseases. The study was based on the hypothesis that poultry PM would induce the release of inflammatory cytokine interleukin-8 (IL-8) by respiratory epithelial cells under the upstream regulation by cytosolic phospholipase A2 (cPLA2) activation and subsequent formation of cyclooxygenase (COX)- and lipoxygenase (LOX)-catalyzed arachidonic acid (AA) metabolites (eicosanoids). Human lung epithelial cells (A549) in culture were treated with the poultry PM (0.1-1.0 mg) for different lengths of time, following which PLA2 activity, release of eicosanoids and secretion of IL-8 in cells were determined. Poultry PM (1.0 mg/ml) caused a significant activation of PLA2 in a time-dependent manner (15-60 min), which was significantly attenuated by the calcium-chelating agents, cPLA2-specific inhibitor (AACOCF3) and antioxidant (vitamin C) in A549 cells. Poultry PM also significantly induced the release of COX- and LOX-catalyzed eicosanoids (prostaglandins, thromboxane A2 and leukotrienes B4 and C4) and upstream activation of AA LOX in the cells. Poultry PM also significantly induced release of IL-8 by the cells in a dose- and time-dependent manner, which was significantly attenuated by the calcium chelating agents, antioxidants and COX- and LOX-specific inhibitors. The current study for the first time revealed that the poultry PM-induced IL-8 release from the respiratory epithelial cells was regulated upstream by reactive oxygen species, cPLA2-, COX- and LOX-derived eicosanoid lipid signal mediators.


Assuntos
Agricultura , Citocinas/metabolismo , Eicosanoides/metabolismo , Material Particulado/farmacologia , Mucosa Respiratória/citologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Ácido Araquidônico/metabolismo , Biocatálise , Linhagem Celular , Relação Dose-Resposta a Droga , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-8/metabolismo , Lipoxigenases/metabolismo , Material Particulado/química , Fosfolipases A2 Citosólicas/antagonistas & inibidores , Fosfolipases A2 Citosólicas/metabolismo , Aves Domésticas , Prostaglandina-Endoperóxido Sintases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mucosa Respiratória/metabolismo , Solventes/química , Fatores de Tempo
5.
Cell Biochem Biophys ; 81(2): 205-229, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36820994

RESUMO

Nordihydroguaiaretic acid (NDGA), a dicatechol and phytochemical polyphenolic antioxidant and an established inhibitor of human arachidonic acid (AA) 5-lipoxygenase (LOX) and 15-LOX, is widely used to ascertain the role of LOXs in vascular endothelial cell (EC) function. As the modulatory effect of NDGA on phospholipase D (PLD), an important lipid signaling enzyme in ECs, thus far has not been reported, here we have investigated the modulation of PLD activity and its regulation by NDGA in the bovine pulmonary artery ECs (BPAECs). NDGA induced the activation of PLD (phosphatidic acid formation) in cells in a dose- and time-dependent fashion that was significantly attenuated by iron chelator and antioxidants. NDGA induced the formation of reactive oxygen species (ROS) in cells in a dose- and time-dependent manner as evidenced from fluorescence microscopy and fluorimetry of ROS and electron paramagnetic resonance spectroscopy of oxygen radicals. Also, NDGA caused a dose-dependent loss of intracellular glutathione (GSH) in BPAECs. Protein tyrosine kinase (PTyK)-specific inhibitors significantly attenuated NDGA-induced PLD activation in BPAECs. NDGA also induced a dose- and time-dependent phosphorylation of tyrosine in proteins in cells. NDGA caused in situ translocation and relocalization of both PLD1 and PLD2 isoforms, in a time-dependent fashion. Cyclooxygenase (COX) inhibitors were ineffective in attenuating NDGA-induced PLD activation in BPAECs, thus ruling out the activation of COXs by NDGA. NDGA inhibited the AA-LOX activity and leukotriene C4 (LTC4) formation in cells. On the other hand, the 5-LOX-specific inhibitors, 5, 8, 11, 14-eicosatetraynoic acid and kaempferol, were ineffective in activating PLD in BPAECs. Antioxidants and PTyK-specific inhibitors effectively attenuated NDGA cytotoxicity in BPAECs. The PLD-specific inhibitor, 5-fluoro-2-indolyl deschlorohalopemide (FIPI), significantly attenuated and protected against the NDGA-induced PLD activation and cytotoxicity in BPAECs. For the first time, these results demonstrated that NDGA, the classic phytochemical polyphenolic antioxidant and LOX inhibitor, activated PLD causing cytotoxicity in ECs through upstream oxidant signaling and protein tyrosine phosphorylation.


Assuntos
Antioxidantes , Fosfolipase D , Animais , Bovinos , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fosforilação , Masoprocol/farmacologia , Masoprocol/metabolismo , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxidantes , Células Endoteliais/metabolismo , Fosfolipase D/metabolismo , Fosfolipase D/farmacologia , Inibidores Enzimáticos/metabolismo , Pulmão/metabolismo , Tirosina/farmacologia , Tirosina/metabolismo
6.
Toxicol Mech Methods ; 22(5): 383-96, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22409285

RESUMO

Lung vascular alterations and pulmonary hypertension associated with oxidative stress have been reported to be involved in idiopathic lung fibrosis (ILF). Therefore, here, we hypothesize that the widely used lung fibrosis inducer, bleomycin, would cause cytoskeletal rearrangement through thiol-redox alterations in the cultured lung vascular endothelial cell (EC) monolayers. We exposed the monolayers of primary bovine pulmonary artery ECs to bleomycin (10 µg) and studied the cytotoxicity, cytoskeletal rearrangements, and the macromolecule (fluorescein isothiocyanate-dextran, 70,000 mol. wt.) paracellular transport in the absence and presence of two thiol-redox protectants, the classic water-soluble N-acetyl-L-cysteine (NAC) and the novel hydrophobic N,N'-bis-2-mercaptoethyl isophthalamide (NBMI). Our results revealed that bleomycin induced cytotoxicity (lactate dehydrogenase leak), morphological alterations (rounding of cells and filipodia formation), and cytoskeletal rearrangement (actin stress fiber formation and alterations of tight junction proteins, ZO-1 and occludin) in a dose-dependent fashion. Furthermore, our study demonstrated the formation of reactive oxygen species, loss of thiols (glutathione, GSH), EC barrier dysfunction (decrease of transendothelial electrical resistance), and enhanced paracellular transport (leak) of macromolecules. The observed bleomycin-induced EC alterations were attenuated by both NAC and NBMI, revealing that the novel hydrophobic thiol-protectant, NBMI, was more effective at µM concentrations as compared to the water-soluble NAC that was effective at mM concentrations in offering protection against the bleomycin-induced EC alterations. Overall, the results of the current study suggested the central role of thiol-redox in vascular EC dysfunction associated with ILF.


Assuntos
Acetilcisteína/farmacologia , Citoesqueleto de Actina/efeitos dos fármacos , Antioxidantes/farmacologia , Bleomicina/farmacologia , Cisteamina/análogos & derivados , Endotélio Vascular/efeitos dos fármacos , Fibrose Pulmonar Idiopática/prevenção & controle , Pulmão/efeitos dos fármacos , Ácidos Ftálicos/farmacologia , Compostos de Sulfidrila/farmacologia , Acetilcisteína/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Animais , Antioxidantes/química , Bovinos , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cisteamina/química , Cisteamina/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Glutationa/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/patologia , Microscopia de Fluorescência , Estrutura Molecular , Oxirredução , Ácidos Ftálicos/química , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Compostos de Sulfidrila/química
7.
Indian J Biochem Biophys ; 49(5): 329-41, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23259319

RESUMO

The use of cyclodextrins as tools to establish the role of cholesterol rafts in cellular functions has become a widely accepted procedure. However, the adverse effects of cyclodextrins as the cholesterol-depleting agents on cellular structure and functions are not reported in detail. Therefore, in the current study, we investigated the membrane-perturbing actions and cytotoxicity of the two widely used cellular cholesterol-depleting cyclodextrins methyl-beta-cyclodextrin (MbetaCD) and hydroxypropyl-beta-cyclodextrin (HPCD) in our well-established bovine pulmonary artery endothelial cell (BPAEC) in vitro model system. BPAECs treated with different concentrations of MbetaCD and HPCD (2% and 5%, wt/vol.) for 15-180 min showed significant loss of membrane cholesterol, cytotoxicity, cell morphology alterations, actin cytoskeletal reorganization, alterations in cellular proteins and membrane fatty acid composition, and decrease in trans-endothelial electrical resistance (TER). MbetaCD induced a marked loss of cellular proteins, as compared to that caused by HPCD under identical conditions. More noticeably, MbetaCD caused a drastic loss of membrane lipid fatty acids in BPAECs, as compared to HPCD which failed to cause such alteration. Removal of cholesterol by cyclodextrin (especially MbetaCD) treatment apparently caused loss of fluidity of the cell membrane and leakage of vital cellular molecules including proteins and fatty acids, and thus caused cytotoxicity and loss of cell morphology in BPAECs. Replenishment of cells with cholesterol following its depletion by MbetaCD treatment significantly attenuated the depletion of cellular cholesterol, cytotoxicity and morphological alterations in BPAECs, indicating the importance of membrane cholesterol in vascular EC integrity. Also, the current study offered a safer method of cholesterol removal from membranes and lipid rafts by HPCD, suggesting its use in studies to investigate the role of lipid raft-associated cholesterol in cellular functions.


Assuntos
Colesterol/metabolismo , Ciclodextrinas/farmacologia , Ciclodextrinas/toxicidade , Citoesqueleto/fisiologia , Células Endoteliais/fisiologia , Fluidez de Membrana/fisiologia , Microdomínios da Membrana/fisiologia , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/isolamento & purificação , Citoesqueleto/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos
8.
J Innate Immun ; 14(5): 555-568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35367992

RESUMO

Emerging data support the pivotal role of extracellular vesicles (EVs) in normal cellular physiology and disease conditions. However, despite their abundance, there is much less information about the lipid mediators carried in EVs, especially in the context of acute lung injury (ALI). Our data demonstrate that C57BL/6 mice subjected to intranasal Escherichia coli lipopolysaccharide (LPS)-induced ALI release, a higher number of EVs into the alveolar space, compared to saline-treated controls. EVs released during ALI originated from alveolar epithelial cells, macrophages, and neutrophils and carry a diverse array of lipid mediators derived from ω-3 and ω-6 polyunsaturated fatty acids (PUFA). The eicosanoids in EVs correlated with cellular levels of arachidonic acid, expression of cytosolic phospholipase A2, cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome epoxygenase p450 proteins in pulmonary macrophages. Furthermore, EVs from LPS-toll-like receptor 4 knockout (TLR4-/-) mice contained significantly lower amounts of COX and LOX catalyzed eicosanoids and ω-3 PUFA metabolites. More importantly, EVs from LPS-treated wild-type mice increased TNF-α release by macrophages and reduced alveolar epithelial monolayer barrier integrity compared to EVs from LPS-treated TLR4-/- mice. In summary, our study demonstrates for the first time that the EV carried PUFA metabolite profile in part depends on the inflammatory status of the lung macrophages and modulates pulmonary macrophage and alveolar epithelial cell function during LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Vesículas Extracelulares , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Vesículas Extracelulares/metabolismo , Lipidômica , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/metabolismo
9.
Cell Biochem Biophys ; 80(1): 45-61, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34387841

RESUMO

Our earlier in vitro and in vivo studies have revealed that the phytosterol, pentalinonsterol (cholest-4,20,24-trien-3-one) (PEN), isolated from the roots of Pentalinon andrieuxii, possesss immunomodulatory properties in macrophages and dendritic cells. Leishmaniasis, caused by the infection of Leishmania spp. (a protozoan parasite), is emerging as the second-leading cause of mortality among the tropical diseases and there is an unmet need for a pharmacological intervention of leishmaniasis. Given the beneficial immunomodulatory actions and lipophilic properties of PEN, the objective of this study was to elucidate the mechanism(s) of action of the immunomodulatory action(s) of PEN in macrophages through the modulation of phospholipase A2 (PLA2) activity that might be crucial in the antileishmanial action of PEN. Therefore, in this study, we investigated whether PEN would modulate the activity of PLA2 in RAW 264.7 macrophages and mouse bone marrow-derived primary macrophages (BMDMs) in vitro and further determined how the upstream PLA2 activation would regulate the downstream cytokine release in the macrophages. Our current results demonstrated that (i) PEN induced PLA2 activation (arachidonic acid release) in a dose- and time-dependent manner that was regulated upstream by the mitogen-activated protein kinases (MAPKs); (ii) the PEN-induced activation of PLA2 was attenuated by the cPLA2-specific pharmacological inhibitors; and (iii) the cPLA2-specific pharmacological inhibitors attenuated the release of inflammatory cytokines from the macrophages. For the first time, our current study demonstrated that PEN exhibited its immunomodulatory actions through the activation of cPLA2 in the macrophages, which potentially could be used in the development of a pharmacological intervention against leishmaniasis.


Assuntos
Fitosteróis , Animais , Macrófagos/metabolismo , Camundongos , Fosfolipases A2/metabolismo , Fitosteróis/metabolismo , Esteróis/metabolismo , Esteróis/farmacologia
10.
Int J Toxicol ; 30(1): 69-90, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21131602

RESUMO

The mechanisms of lung microvascular complications and pulmonary hypertension known to be associated with idiopathic pulmonary fibrosis (IPF), a debilitating lung disease, are not known. Therefore, we investigated whether bleomycin, the widely used experimental IPF inducer, would be capable of activating phospholipase D (PLD) and generating the bioactive lipid signal-mediator phosphatidic acid (PA) in our established bovine lung microvascular endothelial cell (BLMVEC) model. Our results revealed that bleomycin induced the activation of PLD and generation of PA in a dose-dependent (5, 10, and 100 µg) and time-dependent (2-12 hours) fashion that were significantly attenuated by the PLD-specific inhibitor, 5-fluoro-2-indolyl des-chlorohalopemide (FIPI). PLD activation and PA generation induced by bleomycin (5 µg) were significantly attenuated by the thiol protectant (N-acetyl-L-cysteine), antioxidants, and iron chelators suggesting the role of reactive oxygen species (ROS), lipid peroxidation, and iron therein. Furthermore, our study demonstrated the formation of ROS and loss of glutathione (GSH) in cells following bleomycin treatment, confirming oxidative stress as a key player in the bleomycin-induced PLD activation and PA generation in ECs. More noticeably, PLD activation and PA generation were observed to happen upstream of bleomycin-induced cytotoxicity in BLMVECs, which was protected by FIPI. This was also supported by our current findings that exposure of cells to exogenous PA led to internalization of PA and cytotoxicity in BLMVECs. For the first time, this study revealed novel mechanism of the bleomycin-induced redox-sensitive activation of PLD that led to the generation of PA, which was capable of inducing lung EC cytotoxicity, thus suggesting possible bioactive lipid-signaling mechanism/mechanisms of microvascular disorders encountered in IPF.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Endotélio Vascular/efeitos dos fármacos , Fibrose Pulmonar Idiopática/induzido quimicamente , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Domperidona/análogos & derivados , Domperidona/farmacologia , Relação Dose-Resposta a Droga , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Ativação Enzimática/efeitos dos fármacos , Fibrose Pulmonar Idiopática/enzimologia , Fibrose Pulmonar Idiopática/patologia , Indóis/farmacologia , Pulmão/irrigação sanguínea , Microvasos/citologia , Microvasos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfolipase D/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo
11.
Int J Toxicol ; 30(6): 619-38, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21994240

RESUMO

Here, we investigated thiol-redox-mediated phospholipase D (PLD) signaling as a mechanism of mercury cytotoxicity in mouse aortic endothelial cell (MAEC) in vitro model utilizing the novel lipid-soluble thiol-redox antioxidant and heavy metal chelator, N,N'-bis(2-mercaptoethyl)isophthalamide (NBMI) and the novel PLD-specific inhibitor, 5-fluoro-2-indolyl des-chlorohalopemide (FIPI). Our results demonstrated (i) mercury in the form of mercury(II) chloride, methylmercury, and thimerosal induced PLD activation in a dose- and time-dependent manner; (ii) NBMI and FIPI completely attenuated mercury- and oxidant-induced PLD activation; (iii) mercury induced upstream phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2) leading to downstream threonine phosphorylation of PLD(1) which was attenuated by NBMI; (iv) mercury caused loss of intracellular glutathione which was restored by NBMI; and (v) NBMI and FIPI attenuated mercury- and oxidant-induced cytotoxicity in MAECs. For the first time, this study demonstrated that redox-dependent and PLD-mediated bioactive lipid signaling was involved in mercury-induced vascular EC cytotoxicity which was protected by NBMI and FIPI.


Assuntos
Antioxidantes/farmacologia , Quelantes/farmacologia , Células Endoteliais/efeitos dos fármacos , Mercúrio/toxicidade , Fosfolipase D/antagonistas & inibidores , Ácidos Ftálicos/farmacologia , Animais , Antioxidantes/síntese química , Aorta/citologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quelantes/síntese química , Domperidona/análogos & derivados , Domperidona/farmacologia , Células Endoteliais/metabolismo , Poluentes Ambientais/toxicidade , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , L-Lactato Desidrogenase/metabolismo , Metabolismo dos Lipídeos , Camundongos , Oxirredução , Fosfolipase D/metabolismo , Ácidos Ftálicos/síntese química , Transdução de Sinais/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo
12.
J Neurochem ; 112(5): 1249-60, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20028458

RESUMO

Our previous works have elucidated that the 12-lipoxygenase pathway is directly implicated in glutamate-induced neural cell death, and that such that toxicity is prevented by nM concentrations of the natural vitamin E alpha-tocotrienol (TCT). In the current study we tested the hypothesis that phospholipase A(2) (PLA(2)) activity is sensitive to glutamate and mobilizes arachidonic acid (AA), a substrate for 12-lipoxygenase. Furthermore, we examined whether TCT regulates glutamate-inducible PLA(2) activity in neural cells. Glutamate challenge induced the release of [(3)H]AA from HT4 neural cells. Such response was attenuated by calcium chelators (EGTA and BAPTA), cytosolic PLA(2) (cPLA(2))-specific inhibitor (AACOCF(3)) as well as TCT at 250 nM. Glutamate also caused the elevation of free polyunsaturated fatty acid (AA and docosahexaenoic acid) levels and disappearance of phospholipid-esterified AA in neural cells. Furthermore, glutamate induced a time-dependent translocation and enhanced serine phosphorylation of cPLA(2) in the cells. These effects of glutamate on fatty acid levels and on cPLA(2) were significantly attenuated by nM TCT. The observations that AACOCF(3), transient knock-down of cPLA(2) as well as TCT significantly protected against the glutamate-induced death of neural cells implicate cPLA(2) as a TCT-sensitive mediator of glutamate induced neural cell death. This work presents first evidence recognizing glutamate-induced changes in cPLA(2) as a novel mechanism responsible for neuroprotection observed in response to nanomolar concentrations of TCT.


Assuntos
Ácido Glutâmico/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fosfolipases A2/metabolismo , Vitamina E/análogos & derivados , Animais , Ácido Araquidônico/metabolismo , Ácido Araquidônico/farmacologia , Ácidos Araquidônicos/farmacologia , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Transformada , Tamanho Celular/efeitos dos fármacos , Quelantes/farmacologia , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Interações Medicamentosas , Ácido Egtázico/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/metabolismo , Hipocampo/citologia , Camundongos , Inibidores de Fosfolipase A2 , Fosfolipases A2/genética , RNA Interferente Pequeno/farmacologia , Frações Subcelulares/efeitos dos fármacos , Tocotrienóis , Transfecção/métodos , Vitamina E/farmacologia
13.
Am J Physiol Gastrointest Liver Physiol ; 299(3): G632-42, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20558762

RESUMO

Studies have demonstrated that angiotensin II (Ang II) can regulate intestinal fluid and electrolyte transport and control intestinal wall muscular activity. Ang II is also a proinflammatory mediator that participates in inflammatory responses such as apoptosis, angiogenesis, and vascular remodeling; accumulating evidence suggests that this hormone may be involved in gastrointestinal (GI) inflammation and carcinogenesis. Ang II binds to two distinct G protein-coupled receptor subtypes, the AT(1)R and AT(2)R, which are widely expressed in the GI system. Together these studies suggest that Ang II-AT(1)R/-AT(2)R actions may play an important role in GI tract physiology and pathophysiology. Currently it is not known whether miRNAs can regulate the expression of the human AT(1)R (hAT(1)R) in the GI system. PCR and in situ hybridization experiments demonstrated that miR-802 was abundantly expressed in human colon and intestine. Luciferase reporter assays demonstrated that miR-802 could directly interact with the bioinformatics-predicted target site harbored within the 3'-untranslated region of the hAT(1)R mRNA. To validate that the levels of miR-802 were physiologically relevant in the GI system, we demonstrated that miR-802 "loss-of-function" experiments resulted in augmented hAT(1)R levels and enhanced Ang II-induced signaling in a human intestinal epithelial cell line. These results suggest that miR-802 can modulate the expression of the hAT(1)R in the GI tract and ultimately play a role in regulating the biological efficacy of Ang II in this system.


Assuntos
Mucosa Intestinal/metabolismo , MicroRNAs/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Regiões 3' não Traduzidas , Animais , Células CHO , Linhagem Celular Tumoral , Colo/anatomia & histologia , Cricetinae , Cricetulus , Humanos , Mucosa Intestinal/citologia , Intestino Delgado/anatomia & histologia , MicroRNAs/genética , Músculo Liso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor Tipo 1 de Angiotensina/genética
14.
Mol Cell Biochem ; 333(1-2): 9-26, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19585224

RESUMO

Vascular endothelium is vulnerable to the attack of glucose-derived oxoaldehydes (glyoxal and methylglyoxal) during diabetes, through the formation of advanced glycation end products (AGEs). Although aminoguanidine (AG) has been shown to protect against the AGE-induced adverse effects, its protection against the glyoxal-induced alterations in vascular endothelial cells (ECs) such as cytotoxicity, barrier dysfunction, and inhibition of angiogenesis has not been reported and we investigated this in the bovine pulmonary artery ECs (BPAECs). The results showed that glyoxal (1-10 mM) significantly induced cytotoxicity and mitochondrial dysfunction in a dose- and time-dependent (4-12 h) fashion in ECs. Glyoxal was also observed to significantly inhibit EC proliferation. The study also revealed that glyoxal induced EC barrier dysfunction (loss of trans-endothelial electrical resistance), actin cytoskeletal rearrangement, and tight junction alterations in BPAECs. Furthermore, the results revealed that glyoxal significantly inhibited in vitro angiogenesis on the Matrigel. For the first time, this study demonstrated that AG significantly protected against the glyoxal-induced cytotoxicity, barrier dysfunction, cytoskeletal rearrangement, and inhibition of angiogenesis in BPAECs. Therefore, AG appears as a promising protective agent in the treatment of AGE-induced vascular endothelial alterations and dysfunction during diabetes, presumably by blocking the reactivity of the sugar-derived dicarbonyls such as glyoxal and preventing the formation of AGEs.


Assuntos
Citoesqueleto/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Glioxal/farmacologia , Guanidinas/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/patologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Células Endoteliais/ultraestrutura , Endotélio Vascular/citologia , Produtos Finais de Glicação Avançada , Guanidinas/uso terapêutico , Óxido Nítrico Sintase/antagonistas & inibidores , Substâncias Protetoras
15.
Int J Toxicol ; 28(3): 190-206, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19546257

RESUMO

Earlier, we reported that mercury, the environmental risk factor for cardiovascular diseases, activates vascular endothelial cell (EC) phospholipase D (PLD). Here, we report the novel and significant finding that calcium and calmodulin regulated mercury-induced PLD activation in bovine pulmonary artery ECs (BPAECs). Mercury (mercury chloride, 25 microM; thimerosal, 25 microM; methylmercury, 10 microM) significantly activated PLD in BPAECs. Calcium chelating agents and calcium depletion of the medium completely attenuated the mercury-induced PLD activation in ECs. Calmodulin inhibitors significantly attenuated mercury-induced PLD activation in BPAECs. Despite the absence of L-type calcium channels in ECs, nifedipine, nimodipine, and diltiazem significantly attenuated mercury-induced PLD activation and cytotoxicity in BPAECs. This study demonstrated the importance of calcium and calmodulin in the regulation of mercury-induced PLD activation and the protective action of L-type calcium channel blockers against mercury cytotoxicity in vascular ECs, suggesting mechanisms of mercury vasculotoxicity and mercury-induced cardiovascular diseases.


Assuntos
Cálcio/fisiologia , Calmodulina/metabolismo , Células Endoteliais/efeitos dos fármacos , Cloreto de Mercúrio/toxicidade , Compostos de Metilmercúrio/toxicidade , Fosfolipase D/metabolismo , Timerosal/toxicidade , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Calmodulina/antagonistas & inibidores , Bovinos , Morte Celular , Células Cultivadas , Quelantes/farmacologia , Células Endoteliais/metabolismo , Ativação Enzimática
16.
Science ; 349(6247): 535-9, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26228148

RESUMO

The actin cross-linking domain (ACD) is an actin-specific toxin produced by several pathogens, including life-threatening spp. of Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Actin cross-linking by ACD is thought to lead to slow cytoskeleton failure owing to a gradual sequestration of actin in the form of nonfunctional oligomers. Here, we found that ACD converted cytoplasmic actin into highly toxic oligomers that potently "poisoned" the ability of major actin assembly proteins, formins, to sustain actin polymerization. Thus, ACD can target the most abundant cellular protein by using actin oligomers as secondary toxins to efficiently subvert cellular functions of actin while functioning at very low doses.


Assuntos
Actinas/metabolismo , Antígenos de Bactérias/química , Antígenos de Bactérias/toxicidade , Toxinas Bacterianas/química , Toxinas Bacterianas/toxicidade , Proteínas Fetais/antagonistas & inibidores , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas Nucleares/antagonistas & inibidores , Animais , Antígenos de Bactérias/genética , Toxinas Bacterianas/genética , Linhagem Celular , Forminas , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Polimerização/efeitos dos fármacos , Estrutura Terciária de Proteína , Ratos
17.
ACS Infect Dis ; 1(10): 497-506, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-27623316

RESUMO

Visceral leishmaniasis (VL), caused by the protozoan parasite Leishmania donovani, is a global health problem affecting millions of people worldwide. Treatment of VL largely depends on therapeutic drugs such as pentavalent antimonials, amphotericin B, and others, which have major drawbacks due to drug resistance, toxicity, and high cost. In this study, for the first time, we have successfully demonstrated the synthesis and antileishmanial activity of the novel sterol pentalinonsterol (PEN), which occurs naturally in the root of a Mexican medicinal plant, Pentalinon andrieuxii. In the experimental BALB/c mouse model of VL induced by infection with L. donovani, intravenous treatment with liposome-encapsulated PEN (2.5 mg/kg) led to a significant reduction in parasite burden in the liver and spleen. Furthermore, infected mice treated with liposomal PEN showed a strong host-protective TH1 immune response characterized by IFN-γ production and formation of matured hepatic granulomas. These results indicate that PEN could be developed as a novel drug against VL.

18.
Pulm Circ ; 3(1): 108-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23662182

RESUMO

Reactive oxygen species (ROS) have emerged as critical players in the pathophysiology of pulmonary disorders and diseases. Earlier, we have demonstrated that ROS stimulate lung endothelial cell (EC) phospholipase D (PLD) that generates phosphatidic acid (PA), a second messenger involved in signal transduction. In the current study, we investigated the role of PLD signaling in the ROS-induced lung vascular EC barrier dysfunction. Our results demonstrated that hydrogen peroxide (H2O2), a typical physiological ROS, induced PLD activation and altered the barrier function in bovine pulmonary artery ECs (BPAECs). 1-Butanol, the quencher of PLD, generated PA leading to the formation of physiologically inactive phosphatidyl butanol but not its biologically inactive analog, 2-butanol, blocked the H2O2-mediated barrier dysfunction. Furthermore, cell permeable C2 ceramide, an inhibitor of PLD but not the C2 dihydroceramide, attenuated the H2O2-induced PLD activation and enhancement of paracellular permeability of Evans blue conjugated albumin across the BPAEC monolayers. In addition, transfection of BPAECs with adenoviral constructs of hPLD1 and mPLD2 mutants attenuated the H2O2-induced barrier dysfunction, cytoskeletal reorganization and distribution of focal adhesion proteins. For the first time, this study demonstrated that the PLD-generated intracellular bioactive lipid signal mediator, PA, played a critical role in the ROS-induced barrier dysfunction in lung vascular ECs. This study also underscores the importance of PLD signaling in vascular leak and associated tissue injury in the etiology of lung diseases among critically ill patients encountering oxygen toxicity and excess ROS production during ventilator-assisted breathing.

19.
Cell Biochem Biophys ; 67(2): 317-29, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22020799

RESUMO

Mercury, especially methylmercury (MeHg), is implicated in the etiology of cardiovascular diseases. Earlier, we have reported that MeHg induces phospholipase D (PLD) activation through oxidative stress and thiol-redox alteration. Hence, we investigated the mechanism of the MeHg-induced PLD activation through the upstream regulation by phospholipase A2 (PLA2) and lipid oxygenases such as cyclooxygenase (COX) and lipoxygenase (LOX) in the bovine pulmonary artery endothelial cells (BPAECs). Our results showed that MeHg significantly activated both PLA2 (release of [(3)H]arachidonic acid, AA) and PLD (formation of [(32)P]phosphatidylbutanol) in BPAECs in dose- (0-10 µM) and time-dependent (0-60 min) fashion. The cPLA2-specific inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3), significantly attenuated the MeHg-induced [(3)H]AA release in ECs. MeHg-induced PLD activation was also inhibited by AACOCF3 and the COX- and LOX-specific inhibitors. MeHg also induced the formation of COX- and LOX-catalyzed eicosanoids in ECs. MeHg-induced cytotoxicity (based on lactate dehydrogenase release) was protected by PLA2-, COX-, and LOX-specific inhibitors and 1-butanol, the PLD-generated PA quencher. For the first time, our studies showed that MeHg activated PLD in vascular ECs through the upstream action of cPLA2 and the COX- and LOX-generated eicosanoids. These results offered insights into the mechanism(s) of the MeHg-mediated vascular endothelial cell lipid signaling as an underlying cause of mercury-induced cardiovascular diseases.


Assuntos
Vasos Sanguíneos/efeitos dos fármacos , Eicosanoides/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Compostos de Metilmercúrio/farmacologia , Fosfolipase D/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Biocatálise , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiopatologia , Bovinos , Relação Dose-Resposta a Droga , Eicosanoides/biossíntese , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , L-Lactato Desidrogenase/metabolismo , Lipoxigenase/metabolismo , Fosfolipases A2/metabolismo , Fosforilação/efeitos dos fármacos , Prostaglandina-Endoperóxido Sintases/metabolismo , Artéria Pulmonar/citologia , Serina/metabolismo , Fatores de Tempo
20.
Cell Biochem Biophys ; 67(2): 399-414, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22183615

RESUMO

Adiponectin (Ad), an adipokine exclusively secreted by the adipose tissue, has emerged as a paracrine metabolic regulator as well as a protectant against oxidative stress. Pharmacological approaches of protecting against clinical hyperoxic lung injury during oxygen therapy/treatment are limited. We have previously reported that Ad inhibits the NADPH oxidase-catalyzed formation of superoxide from molecular oxygen in human neutrophils. Based on this premise, we conducted studies to determine whether (i) exogenous Ad would protect against the hyperoxia-induced barrier dysfunction in the lung endothelial cells (ECs) in vitro, and (ii) endogenously synthesized Ad would protect against hyperoxic lung injury in wild-type (WT) and Ad-overexpressing transgenic (AdTg) mice in vivo. The results demonstrated that exogenous Ad protected against the hyperoxia-induced oxidative stress, loss of glutathione (GSH), cytoskeletal reorganization, barrier dysfunction, and leak in the lung ECs in vitro. Furthermore, the hyperoxia-induced lung injury, vascular leak, and lipid peroxidation were significantly attenuated in AdTg mice in vivo. Also, AdTg mice exhibited elevated levels of total thiols and GSH in the lungs as compared with WT mice. For the first time, our studies demonstrated that Ad protected against the hyperoxia-induced lung damage apparently through attenuation of oxidative stress and modulation of thiol-redox status.


Assuntos
Adiponectina/metabolismo , Adiponectina/farmacologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Adiponectina/genética , Animais , Bovinos , Hipóxia Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Glutationa/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA