Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Postepy Biochem ; 68(3): 246-254, 2022 09 30.
Artigo em Polonês | MEDLINE | ID: mdl-36317994

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of lipids in hepatocytes. Among NAFLD patients, in 25% of them this disease progress to nonalcoholic steatohepatitis, which is characterized additionally by the development of inflammation and fibrosis of liver. Currently, it is estimated that 24% of the world's population suffers from NAFLD. MCPIP1 protein is an RNase described as a negative regulator of inflammation. Also, MCPIP1 plays a role in lipid metabolism because it inhibits the process of adipogenesis and mice with a deletion of Zc3h12a gene are characterized by dyslipidemia and reduced body fat content. In the case of ischemia-reperfusion injury in liver, MCPIP1 is protective against the inflammation and damage of this organ. Lipid accumulation by hepatocytes is associated with a decrease of Mcpip1 level. In addition, MCPIP1 may influence the PPARγ-mediated lipogenesis process. Presence of Mcpip1 in both myeloid leukocytes and liver epithelial cells is crucial for the maintenance of liver homeostasis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Metabolismo dos Lipídeos , Inflamação , Homeostase
2.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525359

RESUMO

Nonalcoholic fatty liver disease is defined as the accumulation of excessive fat in the liver in the absence of excessive alcohol consumption or any secondary cause. Although the disease generally remains asymptomatic, chronic liver inflammation leads to fibrosis, liver cirrhosis, and even to the development of hepatocellular carcinoma (HCC). Fibrosis results from epithelial-mesenchymal transition (EMT), which leads to dedifferentiation of epithelial cells into cells with a mesenchymal-like phenotype. During EMT, epithelial cells with high expression of E-cadherin, influenced by growth factors, cytokines, and inflammatory processes, undergo morphological changes via enhanced expression of, e.g., vimentin, fibronectin, and N-cadherin. An inducer of EMT and, consequently, of fibrosis development is transforming growth factor beta (TGFß), a pleiotropic cytokine associated with the progression of hepatocarcinogenesis. However, the understanding of the molecular events that direct the development of steatosis into steatohepatitis and liver fibrosis remains incomplete. Our study revealed that both prolonged exposure of hepatocarcinoma cells to fatty acids in vitro and high-fat diet in mice (20 weeks) result in inflammation. Prolonged treatment with fatty acids increased the levels of TGFß, MMP9, and ß-catenin, important EMT inducers. Moreover, the livers of mice fed a high-fat diet exhibited features of liver fibrosis with increased TGFß and IL-1 levels. Increased expression of IL-1 correlated with a decrease in monocyte chemoattractant protein-induced protein 1 (MCPIP1), a negative regulator of the inflammatory response that regulates the stability of proinflammatory transcripts encoding IL-1. Our study showed that a high-fat diet induced EMT by increasing the levels of EMT-activating transcription factors, including Zeb1, Zeb2, and Snail and changed the protein profile to a profile characteristic of the mesenchymal phenotype.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/genética , Fator de Crescimento Transformador beta/genética , beta Catenina/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/genética , Fibronectinas/genética , Fibronectinas/metabolismo , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Oleico/farmacologia , Ribonucleases/genética , Ribonucleases/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/agonistas , Fator de Crescimento Transformador beta/metabolismo , Vimentina/genética , Vimentina/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , beta Catenina/agonistas , beta Catenina/metabolismo
3.
Mediators Inflamm ; 2016: 5365209, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27881904

RESUMO

Ribonucleic acids (RNAs) are very complex and their all functions have yet to be fully clarified. Noncoding genes (noncoding RNA, sequences, and pseudogenes) comprise 67% of all genes and they are represented by housekeeping noncoding RNAs (transfer RNA (tRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), and small nucleolar RNA (snoRNA)) that are engaged in basic cellular processes and by regulatory noncoding RNA (short and long noncoding RNA (ncRNA)) that are important for gene expression/transcript stability. In this review, we summarize data concerning the significance of long noncoding RNAs (lncRNAs) in metabolic syndrome related disorders, focusing on adipose tissue and pancreatic islands.


Assuntos
Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Humanos , RNA Longo não Codificante/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
4.
Biochim Biophys Acta ; 1843(4): 780-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24418043

RESUMO

Monocyte chemoattractant protein-induced protein 1 (MCPIP1) encoded by the ZC3H12a gene (also known as Regnase-1) is involved in the regulation of degradation of mRNA of inflammatory modulators and for processing of pre-miRNA. These functions depend on the presence of the PIN domain. Moreover, MCPIP1 was described as a negative regulator of NF-κB and AP-1 signaling pathways although mechanisms underlying such activity remain unknown. We aimed at determining the role of MCPIP1 in adipogenesis. Here, we present evidence that Mcpip1 transcription is transiently activated during 3T3-L1 transition from pre- to adipocytes. However Mcpip1 protein expression is also strongly decreased at day one after induction of adipogenesis. Knockdown of Mcpip1 results in an upregulation of C/EBPß and PPARγ mRNAs, whereas overexpression of MCPIP1 reduces the level of both transcription factors and impairs adipogenesis. MCPIP1-dependend modulation of C/EBPß and PPARγ levels results in a modulation of the expression of downstream controlled genes. In addition, decreased C/EBPß, but not PPARγ, depends on the activity of the MCPIP1 PIN domain, which is responsible for RNase properties of this protein. Together, these data confirm that MCPIP1 is a key regulator of adipogenesis.


Assuntos
Adipócitos/metabolismo , Adipogenia/genética , Ribonucleases/genética , Transcrição Gênica , Células 3T3-L1 , Adipócitos/citologia , Animais , Proteína beta Intensificadora de Ligação a CCAAT/biossíntese , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Silenciamento de Genes , Camundongos , PPAR gama/biossíntese , Transdução de Sinais
5.
PLoS Pathog ; 9(12): e1003802, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348252

RESUMO

Antagonistic interactions are likely important driving forces of the evolutionary process underlying bacterial genome complexity and diversity. We hypothesized that the ability of evolved bacteria to escape specific components of host innate immunity, such as phagocytosis and killing by macrophages (MΦ), is a critical trait relevant in the acquisition of bacterial virulence. Here, we used a combination of experimental evolution, phenotypic characterization, genome sequencing and mathematical modeling to address how fast, and through how many adaptive steps, a commensal Escherichia coli (E. coli) acquire this virulence trait. We show that when maintained in vitro under the selective pressure of host MΦ commensal E. coli can evolve, in less than 500 generations, virulent clones that escape phagocytosis and MΦ killing in vitro, while increasing their pathogenicity in vivo, as assessed in mice. This pathoadaptive process is driven by a mechanism involving the insertion of a single transposable element into the promoter region of the E. coli yrfF gene. Moreover, transposition of the IS186 element into the promoter of Lon gene, encoding an ATP-dependent serine protease, is likely to accelerate this pathoadaptive process. Competition between clones carrying distinct beneficial mutations dominates the dynamics of the pathoadaptive process, as suggested from a mathematical model, which reproduces the observed experimental dynamics of E. coli evolution towards virulence. In conclusion, we reveal a molecular mechanism explaining how a specific component of host innate immunity can modulate microbial evolution towards pathogenicity.


Assuntos
Adaptação Biológica/genética , Escherichia coli/genética , Escherichia coli/patogenicidade , Macrófagos/microbiologia , Animais , Células Cultivadas , Aptidão Genética , Variação Genética , Infecções por HIV/genética , Infecções por HIV/virologia , Evasão da Resposta Imune/genética , Imunidade Inata , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Virulência/genética
6.
Cardiovasc Diabetol ; 13: 150, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25361524

RESUMO

BACKGROUND: Peroxisome proliferator-activated receptor-γ (PPARγ) agonists, which have been used as insulin sensitizers in diabetic patients, may improve functions of endothelial cells (ECs). We investigated the effect of PPARγ on angiogenic activities of murine ECs and bone marrow-derived proangiogenic cells (PACs). METHODS: PACs were isolated from bone marrow of 10-12 weeks old, wild type, db/db and PPARγ heterozygous animals. Cells were cultured on fibronectin and gelatin coated dishes in EGM-2MV medium. For in vitro stimulations, rosiglitazone (10 µmol/L) or GW9662 (10 µmol/L) were added to 80% confluent cell cultures for 24 hours. Angiogenic potential of PACs and ECs was tested in vitro and in vivo in wound healing assay and hind limb ischemia model. RESULTS: ECs and PACs isolated from diabetic db/db mice displayed a reduced angiogenic potential in ex vivo and in vitro assays, the effect partially rescued by incubation of cells with rosiglitazone (PPARγ activator). Correction of diabetes by administration of rosiglitazone in vivo did not improve angiogenic potential of isolated PACs or ECs. In a hind limb ischemia model we demonstrated that local injection of conditioned media harvested from wild type PACs improved the blood flow restoration in db/db mice, confirming the importance of paracrine action of the bone marrow-derived cells. CONCLUSIONS: In summary, activation of PPARγ by rosiglitazone improves angiogenic potential of diabetic ECs and PACs, but decreased expression of PPARγ in diabetes does not impair angiogenesis.


Assuntos
Células da Medula Óssea/citologia , Medula Óssea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , PPAR gama/metabolismo , Células-Tronco/metabolismo , Animais , Células da Medula Óssea/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Hipoglicemiantes/farmacologia , Isquemia/tratamento farmacológico , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , PPAR gama/genética , Rosiglitazona , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Cicatrização/efeitos dos fármacos
7.
Cell Mol Gastroenterol Hepatol ; 17(6): 887-906, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38311169

RESUMO

BACKGROUND & AIMS: Hepatic fibrosis is characterized by enhanced deposition of extracellular matrix (ECM), which results from the wound healing response to chronic, repeated injury of any etiology. Upon injury, hepatic stellate cells (HSCs) activate and secrete ECM proteins, forming scar tissue, which leads to liver dysfunction. Monocyte-chemoattractant protein-induced protein 1 (MCPIP1) possesses anti-inflammatory activity, and its overexpression reduces liver injury in septic mice. In addition, mice with liver-specific deletion of Zc3h12a develop features of primary biliary cholangitis. In this study, we investigated the role of MCPIP1 in liver fibrosis and HSC activation. METHODS: We analyzed MCPIP1 levels in patients' fibrotic livers and hepatic cells isolated from fibrotic murine livers. In vitro experiments were conducted on primary HSCs, cholangiocytes, hepatocytes, and LX-2 cells with MCPIP1 overexpression or silencing. RESULTS: MCPIP1 levels are induced in patients' fibrotic livers compared with their nonfibrotic counterparts. Murine models of fibrosis revealed that its level is increased in HSCs and hepatocytes. Moreover, hepatocytes with Mcpip1 deletion trigger HSC activation via the release of connective tissue growth factor. Overexpression of MCPIP1 in LX-2 cells inhibits their activation through the regulation of TGFB1 expression, and this phenotype is reversed upon MCPIP1 silencing. CONCLUSIONS: We demonstrated that MCPIP1 is induced in human fibrotic livers and regulates the activation of HSCs in both autocrine and paracrine manners. Our results indicate that MCPIP1 could have a potential role in the development of liver fibrosis.


Assuntos
Comunicação Autócrina , Células Estreladas do Fígado , Cirrose Hepática , Comunicação Parácrina , Ribonucleases , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Animais , Humanos , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Camundongos , Ribonucleases/metabolismo , Ribonucleases/genética , Masculino , Modelos Animais de Doenças , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Hepatócitos/metabolismo , Hepatócitos/patologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/genética , Fígado/patologia , Fígado/metabolismo
8.
Gen Comp Endocrinol ; 183: 69-78, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23291363

RESUMO

Diabetes has been detected in Danish and Swedish bank voles (Myodes glareolus). There are no data, however, concerning the prevalence of diabetes in populations from other geographic regions. We investigated the frequency and physiological effects of glucose metabolism disorders in captive bank voles from Poland. Single measurement of fasting blood glucose concentration performed in the 3-4month old captive-born bank Polish voles without any disease symptoms showed that 8% of individuals (22/284) displayed an impaired fasting glucose (IFG, blood glucose (BG) ≥100mg/dL) and 1% (4/284) showed hyperglycemia (BG ≥126mg/dL) which could suggest diabetes. Next, we analyzed blood glucose in samples taken once a month from an additional cohort of bank voles with (FHD), or without (H), a family history of diabetes. The prevalence of IFG at age six months was 26% (16/62) among bank voles from the H group. In the FHD group the prevalence increased to 49% (43/88), and additional 12% (11/88) became diabetic (DB, BG ≥126mg/dL at two time points). Postnatal stress (three maternal deprivations before weaning) did not affect the risk of developing IFG or DB in H voles, but significantly reduced the frequency of glucose metabolism disorders (IFG and DB combined) in FHD voles. IFG was associated with hyperinsulinemia, but not with other biochemical disturbances. Diabetic animals displayed a progressive malformation and vacuolization of ß-cells in the pancreas, without visible leukocytic infiltrations. In summary, our results indicate that Polish captive bank voles can develop diabetes, which shows features of both type 1 and type 2 diabetes in humans. Risk of diabetes is higher in animal with FHD.


Assuntos
Arvicolinae/metabolismo , Diabetes Mellitus/veterinária , Glucose/metabolismo , Hiperglicemia/veterinária , Doenças dos Roedores/metabolismo , Animais , Glicemia , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/metabolismo , Hiperglicemia/epidemiologia , Hiperglicemia/metabolismo , Privação Materna , Prevalência , Fatores de Risco , Doenças dos Roedores/epidemiologia , Estresse Fisiológico
9.
Postepy Biochem ; 59(3): 257-66, 2013.
Artigo em Polonês | MEDLINE | ID: mdl-24364208

RESUMO

Type 2 diabetes mellitus (T2DM) is a metabolic disease caused by insulin resistance that leads to changes in glucose metabolism. Importantly, both insulin resistance and hyperglycemia are present in T2DM patients as a hallmarks of metabolic syndrome. They negatively affect functions of many cells, for example endothelial cells. Endothelial progenitor cells (EPC) is a population of mononuclear cells that expresses endothelial and progenitor markers. EPC are also characterized by ability to form tubes on matrigel, outgrowth into mature endothelial cells, produce proangiogenic factors or take part in the blood vessels formation. Upon injury endothelial progenitor cells are mobilized from bone marrow, home to injured site and take part in vessels formation. It was shown however, that functions of EPC in T2DM patients are impaired. In this review we focused on the T2DM and its detrimental effects on EPC biology. taking also into account the beneficiary role of anti-diabetic drugs. Decreased number and impaired functions of EPC in T2DM patients might lead to increased frequency of cardiovascular incidents and development of micro- or macroangiopathies.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Angiopatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Células-Tronco/metabolismo , Diabetes Mellitus Tipo 2/complicações , Angiopatias Diabéticas/etiologia , Angiopatias Diabéticas/prevenção & controle , Humanos , Hiperglicemia/metabolismo , Resistência à Insulina , Síndrome Metabólica/metabolismo
10.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166764, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37257731

RESUMO

MCPIP1 (called also Regnase-1) is a negative regulator of inflammation. Knockout of the Zc3h12a gene, encoding Mcpip1 in cells of myeloid origin (Mcpip1MKO), has a pathological effect on many organs. The aim of this study was to comprehensively analyze pathological changes in the skin caused by Mcpip1 deficiency in phagocytes with an emphasis on its molecular mechanism associated with microbiome dysbiosis. Mcpip1MKO mice exhibited spontaneous wound formation on the skin. On a molecular level, the Th2-type immune response was predominantly characterized by an increase in Il5 and Il13 transcript levels, as well as eosinophil and mast cell infiltration. Irritation by DNFB led to a more severe skin contact allergy in Mcpip1MKO mice. Allergic reactions on the skin were strongly influenced by gut dysbiosis and enhanced systemic dissemination of bacteria. This process was followed by activation of the C/EBP pathway in peripheral macrophages, leading to local changes in the cytokine microenvironment that promoted the Th2 response. A reduced bacterial load inhibited allergic inflammation, indicating the role of intestinal dysbiosis in the development of skin diseases. Our results clearly show that MCPIP1 in phagocytes is an essential negative regulator that controls the gut-skin axis.


Assuntos
Disbiose , Inflamação , Animais , Camundongos , Inflamação/metabolismo , Camundongos Knockout , Células Mieloides/metabolismo , Pele/metabolismo
11.
Acta Biochim Pol ; 70(4): 919-925, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929720

RESUMO

Monocyte-chemoattractant protein-induced protein 1 (MCPIP1, or Regnase-1) is an endoribonuclease that degrades translationally active mRNA molecules. MCPIP1 is mostly known for its anti-inflammatory actions, but it is also an important regulator of adipogenesis and lipid metabolism. Its overexpression impairs adipogenesis by reducing mRNA levels of C/EBPß and PPARγ, key transcription factors regulating this process. Although adipocytes overexpressing MCPIP1 are characterised by impaired glucose uptake, the function of MCPIP1 in hepatocyte metabolism remains unknown. In this study, conditional deletion of Zc3h12a in murine liver epithelial cells was used to characterise the role of Mcpip1 in adaptation to 24-hour food restriction. We found that Mcpip1 deficiency in liver epithelial cells (Mcpip1fl/flAlbCre mice) resulted in higher blood glucose levels in response to fasting in comparison to Mcpip1fl/fl counterparts. Hepatic proteome analysis showed 26 down-regulated and 117 up-regulated proteins in Mcpip1fl/flAlbCre animals that were involved in cellular adhesion, extracellular matrix and metabolic processes. In conclusion, our studies provide new insight into the hepatic function of Mcpip1 and its involvement in metabolic control.


Assuntos
Metabolismo dos Lipídeos , Fígado , Animais , Camundongos , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Ribonucleases/genética , RNA Mensageiro/genética
12.
Hepatol Commun ; 7(3): e0008, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36809310

RESUMO

BACKGROUND AND AIMS: NAFLD is characterized by the excessive accumulation of fat in hepatocytes. NAFLD can range from simple steatosis to the aggressive form called NASH, which is characterized by both fatty liver and liver inflammation. Without proper treatment, NAFLD may further progress to life-threatening complications, such as fibrosis, cirrhosis, or liver failure. Monocyte chemoattractant protein-induced protein 1 (MCPIP1, alias Regnase 1) is a negative regulator of inflammation, acting through the cleavage of transcripts coding for proinflammatory cytokines and the inhibition of NF-κB activity. METHODS: In this study, we investigated MCPIP1 expression in the liver and peripheral blood mononuclear cells (PBMCs) collected from a cohort of 36 control and NAFLD patients hospitalized due to bariatric surgery or primary inguinal hernia laparoscopic repair. Based on liver histology data (hematoxylin and eosin and Oil Red-O staining), 12 patients were classified into the NAFL group, 19 into the NASH group, and 5 into the control (non-NAFLD) group. Biochemical characterization of patient plasma was followed by expression analysis of genes regulating inflammation and lipid metabolism. The MCPIP1 protein level was reduced in the livers of NAFL and NASH patients in comparison to non-NAFLD control individuals. In addition, in all groups of patients, immunohistochemical staining showed that the expression of MCPIP1 was higher in the portal fields and bile ducts in comparison to the liver parenchyma and central vein. The liver MCPIP1 protein level negatively correlated with hepatic steatosis but not with patient body mass index or any other analyte. The MCPIP1 level in PBMCs did not differ between NAFLD patients and control patients. Similarly, in patients' PBMCs there were no differences in the expression of genes regulating ß-oxidation (ACOX1, CPT1A, and ACC1) and inflammation (TNF, IL1B, IL6, IL8, IL10, and CCL2), or transcription factors controlling metabolism (FAS, LCN2, CEBPB, SREBP1, PPARA, and PPARG). CONCLUSION: We have demonstrated that MCPIP1 protein levels are reduced in NAFLD patients, but further research is needed to investigate the specific role of MCPIP1 in NAFL initiation and the transition to NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Inflamação , Cirrose Hepática/patologia
13.
Pharmacol Rep ; 74(2): 263-272, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35032321

RESUMO

Murine models of human diseases are of outmost importance for both studying molecular mechanisms driving their development and testing new treatment strategies. In this review, we first discuss the etiology and risk factors for autoimmune liver disease, including primary biliary cholangitis, autoimmune hepatitis and primary sclerosing cholangitis. Second, we highlight important features of murine transgenic models that make them useful for basic scientists, drug developers and clinical researchers. Next, a brief description of each disease is followed by the characterization of selected animal models.


Assuntos
Doenças Autoimunes , Hepatite Autoimune , Hepatopatias , Animais , Doenças Autoimunes/genética , Modelos Animais de Doenças , Hepatite Autoimune/genética , Humanos , Hepatopatias/genética , Camundongos , Fatores de Risco
14.
Arterioscler Thromb Vasc Biol ; 30(8): 1634-41, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20508205

RESUMO

OBJECTIVE: Heme oxygenase-1 (HO-1) is an antioxidative, antiinflammatory, and cytoprotective enzyme that is induced in response to cellular stress. The HO-1 promoter contains a (GT)n microsatellite DNA, and the number of GT repeats can influence the occurrence of cardiovascular diseases. We elucidated the effect of this polymorphism on endothelial cells isolated from newborns of different genotypes. METHODS AND RESULTS: On the basis of HO-1 expression, we classified the HO-1 promoter alleles into 3 groups: short (S) (most active, GT < or = 23), medium (moderately active, GT=24 to 28), and long (least active, GT > or = 29). The presence of the S allele led to higher basal HO-1 expression and stronger induction in response to cobalt protoporphyrin, prostaglandin-J(2), hydrogen peroxide, and lipopolysaccharide. Cells carrying the S allele survived better under oxidative stress, a fact associated with the lower concentration of oxidized glutathione and more favorable oxidative status, as determined by measurement of the ratio of glutathione to oxidized glutathione. Moreover, they proliferated more efficiently in response to vascular endothelial growth factor A, although the vascular endothelial growth factor-induced migration and sprouting of capillaries were not influenced. Finally, the presence of the S allele was associated with lower production of some proinflammatory mediators, such as interleukin-1beta, interleukin-6, and soluble intercellular adhesion molecule-1. CONCLUSIONS: The (GT)n promoter polymorphism significantly modulates a cytoprotective, proangiogenic, and antiinflammatory function of HO-1 in human endothelium.


Assuntos
Repetições de Dinucleotídeos , Células Endoteliais/enzimologia , Heme Oxigenase-1/genética , Regiões Promotoras Genéticas , Alelos , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Citoproteção , Células Endoteliais/imunologia , Indução Enzimática , Variação Genética , Genótipo , Glutationa/metabolismo , Guanina , Heme Oxigenase-1/biossíntese , Heme Oxigenase-1/metabolismo , Humanos , Recém-Nascido , Mediadores da Inflamação/metabolismo , Neovascularização Fisiológica , Estresse Oxidativo , Fenótipo , RNA Mensageiro/metabolismo , Timina , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Dis Model Mech ; 14(3)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737335

RESUMO

Myeloid-derived cells, in particular macrophages, are increasingly recognized as critical regulators of the balance of immunity and tolerance. However, whether they initiate autoimmune disease or perpetuate disease progression in terms of epiphenomena remains undefined.Here, we show that depletion of MCPIP1 in macrophages and granulocytes (Mcpip1fl/fl-LysMcre+ C57BL/6 mice) is sufficient to trigger severe autoimmune disease. This was evidenced by the expansion of B cells and plasma cells and spontaneous production of autoantibodies, including anti-dsDNA, anti-Smith and anti-histone antibodies. Consequently, we document evidence of severe skin inflammation, pneumonitis and histopathologic evidence of glomerular IgG deposits alongside mesangioproliferative nephritis in 6-month-old mice. These phenomena are related to systemic autoinflammation, which secondarily induces a set of cytokines such as Baff, Il5, Il9 and Cd40L, affecting adaptive immune responses. Therefore, abnormal macrophage activation is a key factor involved in the loss of immune tolerance.Overall, we demonstrate that deficiency of MCPIP1 solely in myeloid cells triggers systemic lupus-like autoimmunity and that the control of myeloid cell activation is a crucial checkpoint in the development of systemic autoimmunity.


Assuntos
Autoimunidade , Linfócitos B/imunologia , Diferenciação Celular , Células Mieloides/imunologia , Ribonucleases/metabolismo , Animais , Células Apresentadoras de Antígenos/metabolismo , Autoanticorpos/imunologia , Proliferação de Células , Citocinas/metabolismo , Terapia de Imunossupressão , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Rim/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Nefrite/imunologia , Nefrite/patologia , Plasmócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Baço/imunologia , Células Th17/imunologia , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo
16.
FEBS J ; 288(22): 6563-6580, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34058074

RESUMO

Monocyte chemoattractant protein-induced protein 1 (MCPIP1, alias Regnase 1) is a negative regulator of inflammation, acting through cleavage of transcripts coding for proinflammatory cytokines and by inhibition of NFκB activity. Moreover, it was demonstrated that MCPIP1 regulates lipid metabolism both in adipose tissue and in hepatocytes. In this study, we investigated the effects of tissue-specific Mcpip1 deletion on the regulation of hepatic metabolism and development of nonalcoholic fatty liver disease (NAFLD). We used control Mcpip1fl/fl mice and animals with deletion of Mcpip1 in myeloid leukocytes (Mcpip1fl/fl LysMCre ) and in hepatocytes (Mcpip1fl/fl AlbCre ), which were fed chow or a high-fat diet (HFD) for 12 weeks. Mcpip1fl/fl LysMCre mice fed a chow diet were characterized by a significantly reduced hepatic expression of genes regulating lipid and glucose metabolism, which subsequently resulted in low plasma glucose level and dyslipidemia. These animals also displayed systemic inflammation, demonstrated by increased concentrations of cytokines in the plasma and high Tnfa, Il6, IL1b mRNA levels in the liver and brown adipose tissue (BAT). Proinflammatory leukocyte infiltration into BAT, together with low expression of Ucp1 and Ppargc1a, resulted in hypothermia of 22-week-old Mcpip1fl/fl LysMCre mice. On the other hand, there were no significant changes in phenotype in Mcpip1fl/fl AlbCre mice. Although we detected a reduced hepatic expression of genes regulating glucose metabolism and ß-oxidation in these mice, they remained asymptomatic. Upon feeding with a HFD, Mcpip1fl/fl LysMCre mice did not develop obesity, glucose intolerance, nor hepatic steatosis, but were characterized by low plasma glucose level and dyslipidemia, along with proinflammatory phenotype. Mcpip1fl/fl AlbCre animals, following a HFD, became hypercholesterolemic, but accumulated lipids in the liver at the same level as Mcpip1fl/fl mice, and no changes in the level of soluble factors tested in the plasma were detected. We have demonstrated that Mcpip1 protein plays an important role in the liver homeostasis. Depletion of Mcpip1 in myeloid leukocytes, followed by systemic inflammation, has a more pronounced effect on controlling liver metabolism and homeostasis than the depletion of Mcpip1 in hepatocytes.


Assuntos
Fígado Gorduroso/metabolismo , Fígado/metabolismo , Células Mieloides/metabolismo , Obesidade/metabolismo , Ribonucleases/metabolismo , Animais , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ribonucleases/sangue , Ribonucleases/deficiência
17.
Biochim Biophys Acta Mol Basis Dis ; 1867(5): 166086, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513427

RESUMO

Primary biliary cholangitis (PBC) is an autoimmune disease characterized by progressive destruction of the intrahepatic bile ducts. The immunopathology of PBC involves excessive inflammation; therefore, negative regulators of inflammatory response, such as Monocyte Chemoattractant Protein-1-Induced Protein-1 (MCPIP1) may play important roles in the development of PBC. The aim of this work was to verify whether Mcpip1 expression protects against development of PBC. Genetic deletion of Zc3h12a was used to characterize the role of Mcpip1 in the pathogenesis of PBC in 6-52-week-old mice. We found that Mcpip1 deficiency in the liver (Mcpip1fl/flAlbCre) recapitulates most of the features of human PBC, in contrast to mice with Mcpip1 deficiency in myeloid cells (Mcpip1fl/flLysMCre mice), which present with robust myeloid cell-driven systemic inflammation. In Mcpip1fl/flAlbCre livers, intrahepatic bile ducts displayed proliferative changes with inflammatory infiltration, bile duct destruction, and fibrosis leading to cholestasis. In plasma, increased concentrations of IgG, IgM, and AMA autoantibodies (anti-PDC-E2) were detected. Interestingly, the phenotype of Mcpip1fl/flAlbCre mice was robust in 6-week-old, but milder in 12-24-week-old mice. Hepatic transcriptome analysis of 6-week-old and 24-week-old Mcpip1fl/flAlbCre mice showed 812 and 8 differentially expressed genes, respectively, compared with age-matched control mice, and revealed a distinct set of genes compared to those previously associated with development of PBC. In conclusion, Mcpip1fl/flAlbCre mice display early postnatal phenotype that recapitulates most of the features of human PBC.


Assuntos
Autoanticorpos/imunologia , Imunoglobulinas/imunologia , Inflamação/patologia , Cirrose Hepática Biliar/patologia , Cirrose Hepática/patologia , Fenótipo , Ribonucleases/fisiologia , Animais , Feminino , Inflamação/etiologia , Inflamação/metabolismo , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática Biliar/etiologia , Cirrose Hepática Biliar/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Pharmacol Rep ; 72(1): 1-12, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32016853

RESUMO

The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing worldwide. Globally, it is currently the most common liver disease and is estimated to affect up to 25% of the population. In the first stage, NAFLD is characterized by simple hepatic steatosis (NAFL, nonalcoholic fatty liver) that might progress to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis or hepatocellular carcinoma. In this review, we discuss the global burden of NAFLD, together with future perspectives on how this epidemic could be restrained. There is also an urgent need for the development of new medical strategies for NAFLD patients. We aim to present the beneficial effects of life-style modifications that should be advised to both non-obese and obese NAFLD patients. Since there are currently no medications directly used for the treatment of more advanced NAFLD stages, the central part of this review summarizes ongoing and recently completed clinical trials testing promising drugs for NASH resolution. The marketing of new therapeutic agents would greatly increase the odds of reducing the global burden of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Obesidade/complicações , Animais , Carcinoma Hepatocelular/etiologia , Progressão da Doença , Humanos , Estilo de Vida , Cirrose Hepática/etiologia , Neoplasias Hepáticas/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Prevalência
20.
Antioxidants (Basel) ; 9(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287312

RESUMO

OBJECTIVE: Heme oxygenase-1 (HO-1) is a cytoprotective, proangiogenic and anti-inflammatory enzyme that is often upregulated in tumors. Overexpression of HO-1 in melanoma cells leads to enhanced tumor growth, augmented angiogenesis and resistance to anticancer treatment. The effect of HO-1 in host cells on tumor development is, however, hardly known. METHODS AND RESULTS: To clarify the effect of HO-1 expression in host cells on melanoma progression, C57BL/6xFvB mice of different HO-1 genotypes, HO-1+/+, HO-1+/-, and HO-1-/-, were injected with the syngeneic wild-type murine melanoma B16(F10) cell line. Lack of HO-1 in host cells did not significantly influence the host survival. Nevertheless, in comparison to the wild-type counterparts, the HO-1+/- and HO-1-/- males formed bigger tumors, and more numerous lung nodules; in addition, more of them had liver and spleen micrometastases. Females of all genotypes developed at least 10 times smaller tumors than males. Of importance, the growth of primary and secondary tumors was completely blocked in HO-1+/+ females. This was related to the increased infiltration of leukocytes (mainly lymphocytes T) in primary tumors. CONCLUSIONS: Although HO-1 overexpression in melanoma cells can enhance tumor progression in mice, its presence in host cells, including immune cells, can reduce growth and metastasis of melanoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA