RESUMO
OBJECTIVES: Tobacco smoking is known to cause cancers potentially predisposed by genetic risks. We compared the frequency of gene mutations using a next generation sequencing database of smokers and nonsmokers with prostate cancer (PCa) to identify subsets of patients with potential genetic risks. MATERIALS AND METHODS: Data from the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange (GENIE) registry was analyzed. The GENIE registry contains clinically annotated sequenced tumor samples. We included 1832 men with PCa in our cohort, categorized as smokers and nonsmokers, and compared the frequency of mutations (point mutations, copy number variations, and structural variants) of 47 genes with more than 5% mutation rate between the two categories and correlated with overall survival using logistic regression analysis. RESULTS: Overall, 1007 (55%) patients were nonsmokers, and 825 (45%) were smokers. The mutation frequency was significantly higher in smokers compared to nonsmokers, 47.6% and 41.3%, respectively (p = 0.02). The median tumor mutational burden was also significantly higher in the samples from smokers (3.59 mut/MB) compared to nonsmokers (1.87 mut/MB) (p < 0.001). Patients with a smoking history had a significantly higher frequency of PREX2, PTEN, AGO2, KMT2C, and a lower frequency of adenomatous polyposis coli (APC) and KMT2A mutations than compared to nonsmokers. The overall mortality rate (28.5% vs. 22.8%) was significantly higher among smokers (p = 0.006). On a multivariate logistic regression analysis, the presence of metastatic disease at the time of diagnosis (OR: 2.26, 95% CI: 1.78-2.89, p < 0.001), smoking history (OR: 1.32, 95% CI: 1.05-1.65, p = 0.02), and higher frequency of PTEN somatic gene mutation (OR: 1.89, 95% CI: 1.46-2.45, p < 0.001) were independent predictors of increased overall mortality among patients with PCa. Patients with PTEN mutation had poorer overall survival compared to men without PTEN mutations: 96.00 (95% CI: 65.36-113.98) and 120.00 (95% CI: 115.05-160.00) months, respectively (p < 0.001) irrespective of smoking history although the G129R PTEN mutation was characteristically detected in smokers. CONCLUSIONS: PCa patients with a tobacco smoking history demonstrated a significantly higher frequency of somatic genetic mutations. Whereas mutations of PREX2, KMT2C, AGO2, and PTEN genes were higher in smokers, the APC and KMT2A mutations were higher in nonsmokers. The PTEN somatic gene mutation was associated with increased overall mortality among patients with PCa irrespective of smoking history. We found that G129R PTEN mutation known to reduce the PTEN phosphatase activity and K267Rfs*9 a frameshift deletion mutation in the C2 domain of PTEN associated with membrane binding exclusively detected in smokers and nonsmokers, respectively. These findings may be used to further our understanding of PCa associated with smoking.
Assuntos
Variações do Número de Cópias de DNA , Neoplasias da Próstata , Masculino , Humanos , Mutação , Fumar/efeitos adversos , Fumar/genética , Fumar Tabaco/efeitos adversos , Fumar Tabaco/genética , Neoplasias da Próstata/genéticaRESUMO
Resistance to androgen deprivation therapy, or castration-resistant prostate cancer (CRPC), is often accompanied by metastasis and is currently the ultimate cause of prostate cancer-associated deaths in men. Recently, secondary hormonal therapies have led to an increase of neuroendocrine prostate cancer (NEPC), a highly aggressive variant of CRPC. Here, we identify that high levels of cell surface receptor Trop2 are predictive of recurrence of localized prostate cancer. Moreover, Trop2 is significantly elevated in CRPC and NEPC, drives prostate cancer growth, and induces neuroendocrine phenotype. Overexpression of Trop2 induces tumor growth and metastasis while loss of Trop2 suppresses these abilities in vivo. Trop2-driven NEPC displays a significant up-regulation of PARP1, and PARP inhibitors significantly delay tumor growth and metastatic colonization and reverse neuroendocrine features in Trop2-driven NEPC. Our findings establish Trop2 as a driver and therapeutic target for metastatic prostate cancer with neuroendocrine phenotype and suggest that high Trop2 levels could identify cancers that are sensitive to Trop2-targeting therapies and PARP1 inhibition.
Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/secundário , Carcinoma Neuroendócrino/patologia , Moléculas de Adesão Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Poli(ADP-Ribose) Polimerase-1/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Animais , Antígenos de Neoplasias/genética , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/metabolismo , Moléculas de Adesão Celular/genética , Movimento Celular , Proliferação de Células , Seguimentos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Fenótipo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Prognóstico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Distinguishing clinically significant from indolent prostate cancer (PC) is a major clinical challenge. We utilised targeted protein biomarker discovery approach to identify biomarkers specific for pro-metastatic PC. Serum samples from the cancer-free group; Cambridge Prognostic Group 1 (CPG1, low risk); CPG5 (high risk) and metastatic disease were analysed using Olink Proteomics panels. Tissue validation was performed by immunohistochemistry in a radical prostatectomy cohort (n = 234). We discovered that nine proteins (pleiotrophin (PTN), MK, PVRL4, EPHA2, TFPI-2, hK11, SYND1, ANGPT2, and hK14) were elevated in metastatic PC patients when compared to other groups. PTN levels were increased in serum from men with CPG5 compared to benign and CPG1. High tissue PTN level was an independent predictor of biochemical recurrence and metastatic progression in low- and intermediate-grade disease. These findings suggest that PTN may represent a novel biomarker for the presence of poor prognosis local disease with the potential to metastasise warranting further investigation.
Assuntos
Biomarcadores Tumorais/sangue , Proteínas de Transporte/sangue , Citocinas/sangue , Prostatectomia/mortalidade , Neoplasias da Próstata/patologia , Seguimentos , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/sangue , Neoplasias da Próstata/cirurgia , Taxa de SobrevidaRESUMO
BACKGROUND: The renal sympathetic nervous system modulates systemic blood pressure, cardiac performance, and renal function. Pathological increases in renal sympathetic nerve activity contribute to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). We investigated the effects of renal sympathetic denervation performed at early or late stages of HFpEF progression. METHODS AND RESULTS: Male ZSF1 obese rats were subjected to radiofrequency renal denervation (RF-RDN) or sham procedure at either 8 weeks or 20 weeks of age and assessed for cardiovascular function, exercise capacity, and cardiorenal fibrosis. Renal norepinephrine and renal nerve tyrosine hydroxylase staining were performed to quantify denervation following RF-RDN. In addition, renal injury, oxidative stress, inflammation, and profibrotic biomarkers were evaluated to determine pathways associated with RDN. RF-RDN significantly reduced renal norepinephrine and tyrosine hydroxylase content in both study cohorts. RF-RDN therapy performed at 8 weeks of age attenuated cardiac dysfunction, reduced cardiorenal fibrosis, and improved endothelial-dependent vascular reactivity. These improvements were associated with reductions in renal injury markers, expression of renal NLR family pyrin domain containing 3/interleukin 1ß, and expression of profibrotic mediators. RF-RDN failed to exert beneficial effects when administered in the 20-week-old HFpEF cohort. CONCLUSIONS: Our data demonstrate that early RF-RDN therapy protects against HFpEF disease progression in part due to the attenuation of renal fibrosis and inflammation. In contrast, the renoprotective and left ventricular functional improvements were lost when RF-RDN was performed in later HFpEF progression. These results suggest that RDN may be a viable treatment option for HFpEF during the early stages of this systemic inflammatory disease.
Assuntos
Insuficiência Cardíaca , Humanos , Masculino , Ratos , Animais , Insuficiência Cardíaca/metabolismo , Volume Sistólico , Tirosina 3-Mono-Oxigenase/metabolismo , Rim/metabolismo , Simpatectomia/métodos , Inflamação/metabolismo , Norepinefrina , Fibrose , DenervaçãoRESUMO
INTRODUCTION AND OBJECTIVES: We explored characteristic genetic mutations associated with metastatic prostate cancer (PCa) by comparing next generation sequencing (NGS) data between men with or without metastatic disease at diagnosis. METHODS: We queried the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange (GENIE) registry for men diagnosed with PCa. Patients were categorized into with (M1) or without metastatic disease (M0) groups. The difference in the frequency of genetic mutations between the two groups and the prognostic significance of the mutations were analyzed using SPSS V28. We included frequency rate of > 5% and P values < 0.05 were considered statistically significant to maintain over 95% true positive detection rate. RESULTS: Of a total of 10,580 patients with diagnosis of PCa in the dataset, we selected a study cohort of 1268 patients without missing data; 700 (55.2%) had nonmetastatic PCa, 421 (33.2%) and 147 (11.6%) patients had metastatic castration sensitive and resistant PCa respectively. The median age at diagnosis and serum prostate specific antigen (PSA) level for the entire cohort was 62.8 years (IQR 56.3-68.4) and 8.0 ng/ml (IQR 4.9-20.9) respectively. A vast majority of the cohort were of Caucasian ancestry (89.1%). Of a total of 561 genes sequenced, there were mutations in 79 genes (14.1%). The mutation frequency was significantly higher in M1PCa compared to M0PCa, 35.7% and 23.3%, respectively (Pâ¯=â¯<0.001). The median tumor mutational burden was also significantly higher in the samples from M1PCa (2.59 mut/MB) compared to M0PCa (1.96 mut/MB) (P < 0.001). Compared to M0PCa patients, M1PCa patients demonstrated significantly higher rate of genetic mutations; TP53 (38.73% vs. 17.71% P < 0.001), PTEN (25.70% vs. 11.71% P < 0.001), AR (17.25% vs. 1.43% P < 0.001), APC (11.8% vs. 4.43% P < 0.001), TMPRSS2 (31.5% vs. 11.14% P < 0.001), ERG (23.59% vs. 13.13% P < 0.001), FOXA1 (17.43% vs. 6.33% P < 0.001), MYC (8.45% vs. 2.29% P < 0.001), RB1 (10.39% vs. 2.43% P < 0.001) and CDK12 (8.45% vs. 1.31% P < 0.001).⯠Of the various cellular signaling pathways, the androgen receptor signaling pathway was most often impacted. In the cohort with M1 disease, compared to men without genetic mutations the men with genetic mutations demonstrated worse survival (Pâ¯=â¯<0.001, log rank test). Compared to castration sensitive M1 patients, AR (57% vs. 4% P < 0.001), TP53 (50.7% vs. 34% P < 0.001), PTEN (35.2% vs. 22.1% P < 0.001), RB1(23.9% vs. 4.75% P < 0.001) were significantly more frequently mutated in castration resistant M1 patients. In contrast, mutations of SPOP (13.3% vs. 7.9% P < 0.001), FOXA1 (17.6% vs. 5.3% P < 0.001) and CDK12 (12% vs. 6.45% P < 0.001) were significantly more frequently found in castration sensitive M1 patients compared to castration resistant patients. CONCLUSION: Patients with M1PCa demonstrated characteristic genetic mutations compared to M0PCa, which most often influenced androgen receptor signaling and is associated with worse survival. In addition, we identified distinct genetic mutations between castration sensitive and resistant M1PCa. These findings may be used to further our understanding and management of men with PCa.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos/genética , Neoplasias da Próstata/patologia , Prognóstico , Mutação , Biomarcadores Tumorais/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Nucleares/genética , Proteínas Repressoras/genéticaRESUMO
Background Recent studies have suggested that cardiac nitrosative stress mediated by pathological overproduction of nitric oxide (NO) via inducible NO synthase (iNOS) contributes to the pathogenesis of heart failure with preserved ejection fraction (HFpEF). Other studies have suggested that endothelial NO synthase (eNOS) dysfunction and attenuated NO bioavailability contribute to HFpEF morbidity and mortality. We sought to further investigate dysregulated NO signaling and to examine the effects of a NO-based dual therapy (sodium nitrite+hydralazine) following the onset of HFpEF using a "2-hit" murine model. Methods and Results Nine-week-old male C57BL/6 N mice (n=15 per group) were treated concurrently with high-fat diet and N(ω)-nitro-L-arginine methyl ester (L-NAME) (0.5 g/L per day) via drinking water for 10 weeks. At week 5, mice were randomized into either vehicle (normal saline) or combination treatment with sodium nitrite (75 mg/L in the drinking water) and hydralazine (2.0 mg/kg IP, BID). Cardiac structure and function were monitored with echocardiography and invasive hemodynamic measurements. Cardiac mitochondrial respiration, aortic vascular function, and exercise performance were also evaluated. Circulating and myocardial nitrite were measured to determine the bioavailability of NO. Circulating markers of oxidative or nitrosative stress as well as systemic inflammation were also determined. Severe HFpEF was evident by significantly elevated E/E', LVEDP, and Tau in mice treated with L-NAME and HFD, which was associated with impaired NO bioavailability, mitochondrial respiration, aortic vascular function, and exercise capacity. Treatment with sodium nitrite and hydralazine restored NO bioavailability, reduced oxidative and nitrosative stress, preserved endothelial function and mitochondrial respiration, limited the fibrotic response, and improved exercise capacity, ultimately attenuating the severity of "two-hit" HFpEF. Conclusions Our data demonstrate that nitrite, a well-established biomarker of NO bioavailability and a physiological source of NO, is significantly reduced in the heart and circulation in the "2-hit" mouse HFpEF model. Furthermore, sodium nitrite+hydralazine combined therapy significantly attenuated the severity of HFpEF in the "2-hit" cardiometabolic HFpEF. These data suggest that supplementing NO-based therapeutics with a potent antioxidant and vasodilator agent may result in synergistic benefits for the treatment of HFpEF.
Assuntos
Água Potável , Insuficiência Cardíaca , Camundongos , Masculino , Animais , Insuficiência Cardíaca/tratamento farmacológico , Nitrito de Sódio , Volume Sistólico/fisiologia , NG-Nitroarginina Metil Éster , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Hidralazina/farmacologia , Óxido Nítrico SintaseRESUMO
Prostate cancer remains the most common non-cutaneous malignancy among men in the United States. To discover potential serum-based biomarkers for high-risk prostate cancer, we performed a high-multiplex immunoassay utilizing patient-matched pre-operative and post-operative serum samples from ten men with high-grade and high-volume prostate cancer. Our study identified six (CASP8, MSLN, FGFBP1, ICOSLG, TIE2 and S100A4) out of 174 proteins that were significantly decreased after radical prostatectomy. High levels of CASP8 were detected in pre-operative serum samples when compared to post-operative serum samples and serum samples from patients with benign prostate hyperplasia (BPH). By immunohistochemistry, CASP8 protein was expressed at higher levels in prostate cancer tissues compared to non-cancerous and BPH tissues. Likewise, CASP8 mRNA expression was significantly upregulated in prostate cancer when compared to benign prostate tissues in four independent clinical datasets. In addition, mRNA levels of CASP8 were higher in patients with recurrent prostate cancer when compared to patients with non-recurrent prostate cancer and high expression of CASP8 was associated with worse disease-free survival and overall survival in renal cancer. Together, our results suggest that CASP8 may potentially serve as a biomarker for high-risk prostate cancer and possibly renal cancer.