Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(16): 11684-11696, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057377

RESUMO

The site-specific hydrogen-atom elimination mechanism previously reported for photoexcited ethyl radicals (CH3CH2) [D. V. Chicharro et al., Chem. Sci., 2019, 10, 6494] is interrogated in the photodissociation of the ethyl isotopologues CD3CD2, CH3CD2 and CD3CH2 through the velocity map imaging (VMI) detection of the produced hydrogen- and deuterium-atoms. The radicals, generated in situ from photolysis of a precursor using the same laser pulse employed in their excitation to Rydberg states, decompose along the Cα-H/D and Cß-H/D reaction coordinates through coexisting statistical and site-specific mechanisms. The experiments are carried out at two excitation wavelengths, 201 and 193 nm. The comparison between both sets of results provides accurate information regarding the primary role in the site-specific mechanism of the radical internal reservoir. Importantly, at 193 nm excitation, higher energy dissociation channels (not observed at 201 nm) producing low-recoil H/D-atoms become accessible. High-level ab initio calculations of potential energy curves and the corresponding non-adiabatic interactions allow us to rationalize the experimental results in terms of competitive non-adiabatic decomposition paths. Finally, the adiabatic behavior of the conical intersections in the face of several vibrational modes - the so-called vibrational promoting modes - is discussed.

2.
J Phys Chem A ; 127(18): 4096-4102, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37119198

RESUMO

The structures of gas-phase noncovalently bound clusters have long been studied in supersonic expansions. This method of study, while providing a wealth of information about the nature of noncovalent bonds, precludes observation of the formation of the cluster, as the clusters form just after the orifice of the pulsed valve. Here, we directly observe formation of ethanol-methanol dimers via microwave spectroscopy in a controlled cryogenic environment. Time profiles of the concentration of reagents in the cell yielded gas-phase reaction rate constants of kMe-g = (2.8 ± 1.4) × 10-13 cm3 molecule-1 s-1 and kMe-t = (1.6 ± 0.8) × 10-13 cm3 molecule-1 s-1 for the pseudo-second-order ethanol-methanol dimerization reaction at 8 K. The relaxation cross section between the gauche and trans conformers of ethanol was also measured using the same technique. In addition, thermodynamic relaxation between conformers of ethanol over time allowed for selection of conformer stoichiometry in the ethanol-methanol dimerization reaction, but no change in the ratio of dimer conformers was observed with changing ethanol monomer stoichiometry.

3.
Phys Chem Chem Phys ; 22(9): 4984-4992, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083618

RESUMO

Mass resolved REMPI spectra, as well as CH3+and I+ ion and photoelectron images, were recorded for two-photon resonant excitations of CH3I via s, p and d Rydberg states (CH3I**) in the excitation region of 55 700 to 70 000 cm-1. Photoelectron (PE) and ion kinetic energy release spectra (KERs) were derived from the images. The data revealed that after the two-photon resonant excitation, an additional photon is absorbed to form one or more superexcited state(s) (CH3I#), followed by branching into three pathways. The major one is the dissociation of CH3I# to form excited Rydberg states of iodine atoms (I**) along with CH3(X), a phenomenon not commonly observed in methyl halides. The second (minor) pathway involves autoionization of CH3I# towards CH3I+(X), which absorbs another photon to form CH3+ along with I/I* and the third one (minor) is CH3I# dissociation towards the ion pair, CH3+ + I-, prior to I- electron ejection. Furthermore, one-photon non-resonant dissociation of CH3I to form CH3(X) and I/I* prior to three-photon ionization of the fragments is also detected.

4.
Phys Chem Chem Phys ; 22(14): 7404-7411, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32215414

RESUMO

Photoelectron circular dichroism (PECD) is a highly sensitive enantiospecific spectroscopy for studying chiral molecules in the gas phase using either single-photon ionization or multiphoton ionization. In the short pulse limit investigated with femtosecond lasers, resonance-enhanced multiphoton ionization (REMPI) is rather instantaneous and typically occurs simultaneously via more than one vibrational or electronic intermediate state due to limited frequency resolution. In contrast, vibrational resolution in the REMPI spectrum can be achieved using nanosecond lasers. In this work, we follow the high-resolution approach using a tunable narrow-band nanosecond laser to measure REMPI-PECD through distinct vibrational levels in the intermediate 3s and 3p Rydberg states of fenchone. We observe the PECD to be essentially independent of the vibrational level. This behaviour of the chiral sensitivity may pave the way for enantiomer specific molecular identification in multi-component mixtures: one can specifically excite a sharp, vibrationally resolved transition of a distinct molecule to distinguish different chiral species in mixtures.

5.
Phys Chem Chem Phys ; 21(20): 10391-10401, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31065628

RESUMO

Two-color pump-probe experiments were performed to explore the multiphoton dynamics of CH3Br at high excitation energies of 8-10 eV, involving two-photon resonant excitations to a number of np and nd Rydberg states (pump) followed by REMPI detection (probe) of the Br, Br* and CH3(X) photoproducts. Slice images of Br+ and CH3+ ions were recorded in pump-only, probe-only and pump and probe experiments. Kinetic-energy release spectra (KERs), as well as spatial anisotropy parameters, were extracted from the images to identify the processes and the dynamics involved. Predissociation channels, following the two-photon resonant excitations and non-resonant photodissociation forming CH3(X) and Br/Br*, were identified and characterized. Furthermore, the probe excitations for CH3(X) involved near-resonant excitations to lower energy 5s Rydberg states of CH3Br. In three-photon excitation processes, a striking contrast is seen between excitations via the p/d and the s Rydberg states. Involvement of high-energy interactions between Rydberg and ion-pair states is identified.

6.
Phys Chem Chem Phys ; 20(25): 17423-17433, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29911230

RESUMO

The multiphoton dynamics of CH3Br were probed by Mass Resolved MultiPhoton Ionization (MR-MPI), Slice Imaging and Photoelectron Imaging in the two-photon excitation region of 66 000 to 80 000 cm-1. Slice images of the CH3+ and Br+ photoproducts of ten two-photon resonant transitions to np and nd Rydberg states of the parent molecule were recorded. CH3+ ions dominate the mass spectra. Kinetic energy release spectra (KERs) were derived from slice and photoelectron images and anisotropy parameters were extracted from the angular distributions of the ions to identify the processes and the dynamics involved. At all wavelengths we observe three-photon excitations, via the two-photon resonant transitions to molecular Rydberg states, forming metastable, superexcited (CH3Br#) states which dissociate to form CH3 Rydberg states (CH3**) along with Br/Br*. A correlation between the parent Rydberg states excited and CH3** formed is evident. For the three highest excitation energies used, the CH3Br# metastable states also generate high kinetic energy fragments of CH3(X) and Br/Br*. In addition for two out of these three wavelengths we also measure one-photon photolysis of CH3Br in the A band forming CH3(X) in various vibrational modes and bromine atoms in the ground (Br) and spin-orbit excited (Br*) states.

7.
Phys Rev Lett ; 118(23): 233401, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28644644

RESUMO

We report a novel highly spin-polarized deuterium (SPD) source, via the photodissociation of deuterium iodide at 270 nm. I(^{2}P_{3/2}) photofragments are ionized with m-state selectivity, and their velocity distribution measured via velocity-map slice imaging, from which the D polarization is determined. The process produces ∼100% electronically polarized D at the time of dissociation, which is then converted to ∼60% nuclear D polarization after ∼1.6 ns. These production times for SPD allow collision-limited densities of ∼10^{18} cm^{-3} and at production rates of ∼10^{21} s^{-1} which are 10^{6} and 10^{4} times higher than conventional (Stern-Gerlach separation) methods, respectively. We discuss the production of SPD beams, and combining high-density SPD with laser fusion, to investigate polarized D-T, D-^{3}He, and D-D fusion.

8.
Commun Chem ; 5(1): 31, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36697786

RESUMO

Straightforward identification of chiral molecules in multi-component mixtures of unknown composition is extremely challenging. Current spectrometric and chromatographic methods cannot unambiguously identify components while the state of the art spectroscopic methods are limited by the difficult and time-consuming task of spectral assignment. Here, we introduce a highly sensitive generalized version of microwave three-wave mixing that uses broad-spectrum fields to detect chiral molecules in enantiomeric excess without any prior chemical knowledge of the sample. This method does not require spectral assignment as a necessary step to extract information out of a spectrum. We demonstrate our method by recording three-wave mixing spectra of multi-component samples that provide direct evidence of enantiomeric excess. Our method opens up new capabilities in ultrasensitive phase-coherent spectroscopic detection that can be applied for chiral detection in real-life mixtures, raw products of chemical reactions and difficult to assign novel exotic species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA