Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Technol Adv Mater ; 25(1): 2336399, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628978

RESUMO

Photovoltaic-thermoelectric (PV-TE) tandem system has been considered as an effective way to fully utilize the solar spectrum, and has been demonstrated in a perovskite solar cell (PSC)-thermoelectric (TE) configuration. However, the conventional PSC-TE tandem architecture cannot convert infrared light transmitted through the upper PSC into heat effectively, impeding the heat-electricity conversion of TE devices. Herein, a semi-transparent PSC-photothermal-TE tandem system is designed for improved photothermal utilization. Through optimizing the buffer layer of the back transparent electrode, semi-transparent PSC with a power conversion efficiency (PCE) of 13% and an average transmittance of 53% in the range of 800-1500 nm was obtained. On this basis, a photothermal thin film was introduced between the semi-transparent PSC and the TE device, which increased the efficiency contribution ratio of the TE device from 14% to 19%, showing enhanced utilization of AM 1.5 G solar spectrum and improved photo-thermal-electric conversion efficiency.


We have constructed a semi-transparent perovskite solar cell-photothermal-thermoelectric tandem system through the optimization of transparent back electrode and the introduction of photothermal thin-film, realizing enhanced utilization of solar energy.

2.
Sci Technol Adv Mater ; 22(1): 363-372, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34104116

RESUMO

Heavily acceptor-doped Cu2SnS3 (CTS) shows promisingly large power factor (PF) due to its rather high electrical conductivity (σ) which causes a modest ZT with a high electronic thermal conductivity (κe ). In the present work, a strategy of carrier compensation through Sb-doping at the Sn site in Cu2Sn0.8Co0.2S3 was investigated, aiming at tailoring electrical and phonon transport properties simultaneously. Rietveld analysis suggested a complex polymorphic microstructure in which the cation-(semi)ordered tetragonal phase becomes dominant over the coherently bonded cation-disordered cubic phase, as is preliminarily revealed using TEM observation, upon Sb-doping and Sb would substitute Sn preferentially in the tetragonal structure. With increasing content of Sb, the σ was lowered and the Seebeck coefficient (S) was enhanced effectively, which gave rise to high PFs maintained at ~10.4 µWcm-1K-2 at 773 K together with an optimal reduction in κe by 60-70% in the whole temperature range. The lattice thermal conductivity was effectively suppressed from 1.75 Wm-1K-1 to ~1.2 Wm-1K-1 at 323 K while maintained very low at 0.3-0.4 Wm-1K-1 at 773 K. As a result, a peak ZT of ~0.88 at 773 K has been achieved for Cu2Sn0.74Sb0.06Co0.2S3, which stands among the tops so far of the CTS-based diamond-like ternary sulfides. These findings demonstrate that polymorphic microstructures with cation-disordered interfaces as an approach to achieve effective phonon-blocking and low lattice thermal conductivity, of which further crystal chemistry, microstructural and electrical tailoring are possible by appropriate doping.

3.
Small ; 16(15): e1901901, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31338976

RESUMO

TaS2 nanolayers with reduced dimensionality show interesting physics, such as a gate-tunable phase transition and enhanced superconductivity, among others. Here, a solution-based strategy to fabricate a large-area foil of hybrid TaS2 /organic superlattice, where [TaS2 ] monolayers and organic molecules alternatively stack in atomic scale, is proposed. The [TaS2 ] layers are spatially isolated with remarkably weakened interlayer bonding, resulting in lattice vibration close to that of TaS2 monolayers. The foil also shows excellent mechanical flexibility together with a large electrical conductivity of 1.2 × 103 S cm-1 and an electromagnetic interference of 31 dB, among the highest values for solution-processed thin films of graphene and inorganic graphene analogs. The solution-based strategy reported herein can add a new dimension to manipulate the structure and properties of 2D materials and provide new opportunities for flexible nanoelectronic devices.

4.
J Nanosci Nanotechnol ; 18(1): 110-115, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29768821

RESUMO

pH-Responsive smart capsules were developed by the layer-by-layer assembly with a colloidtemplating technique. Polystyrene (PS) particles were employed as core templates. Acid-soluble inorganic nanosheets were prepared from Mg-Al layered double hydroxide (LDH) by an exfoliation technique. LDH nanosheets and anionic polyelectrolytes were alternatively deposited on PS core particles by the layer-by-layer assembly using electrostatic interaction. Hollow capsules were obtained by the removal of the PS core particles. The hollow capsules obtained thus were collapsed at acidic conditions by dissolution of LDH nanosheets in the hollow shells. The dissolution rate, i.e., the responsiveness of capsule, is tunable according to the strength of acids.

5.
Nat Mater ; 14(6): 622-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25849369

RESUMO

Organic semiconductors are attracting increasing interest as flexible thermoelectric materials owing to material abundance, easy processing and low thermal conductivity. Although progress in p-type polymers and composites has been reported, their n-type counterpart has fallen behind owing to difficulties in n-type doping of organic semiconductors. Here, we present an approach to synthesize n-type flexible thermoelectric materials through a facile electrochemical intercalation method, fabricating a hybrid superlattice of alternating inorganic TiS2 monolayers and organic cations. Electrons were externally injected into the inorganic layers and then stabilized by organic cations, providing n-type carriers for current and energy transport. An electrical conductivity of 790 S cm(-1) and a power factor of 0.45 mW m(-1) K(-2) were obtained for a hybrid superlattice of TiS2/[(hexylammonium)x(H2O)y(DMSO)z], with an in-plane lattice thermal conductivity of 0.12 ± 0.03 W m(-1) K(-1), which is two orders of magnitude smaller than the thermal conductivities of the single-layer and bulk TiS2. High power factor and low thermal conductivity contributed to a thermoelectric figure of merit, ZT, of 0.28 at 373 K, which might find application in wearable electronics.

6.
Nano Lett ; 15(10): 6302-8, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26308495

RESUMO

The dielectric constant is a key parameter that determines both optical and electronic properties of materials. It is desirable to tune electronic properties though dielectric engineering approach. Here, we present a systematic approach to tune carrier mobilities of hybrid inorganic/organic materials where layered two-dimensional transition-metal dichalcogenide TiS2 is electrochemically intercalated with polar organic molecules. By manipulating the dielectric mismatch using polar organic molecules with different dielectric constants, ranging from 10 to 41, the electron mobility of the TiS2 layers was changed three times due to the dielectric screening of the Coulomb-impurity scattering processes. Both the overall thermal conductivity and the lattice thermal conductivity were also found to decrease with an increasing dielectric mismatch. The enhanced electrical mobility along with the decreased thermal conductivity together gave rise to a significantly improved thermoelectric figure of merit of the hybrid inorganic/organic materials at room temperature, which might find applications in wearable electronics.

7.
Sci Technol Adv Mater ; 16(2): 026001, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27877778

RESUMO

A systematic study of La-based perovskite-type oxides from the viewpoint of their electronic conduction properties was performed. LaCo0.5Ni0.5O3±Î´ was found to be a promising candidate as a replacement for standard metals used in oxide electrodes and wiring that are operated at temperatures up to 1173 K in air because of its high electrical conductivity and stability at high temperatures. LaCo0.5Ni0.5O3±Î´ exhibits a high conductivity of 1.9 × 103 S cm-1 at room temperature (R.T.) because of a high carrier concentration n of 2.2 × 1022 cm-3 and a small effective mass m∗ of 0.10 me. Notably, LaCo0.5Ni0.5O3±Î´ exhibits this high electrical conductivity from R.T. to 1173 K, and little change in the oxygen content occurs under these conditions. LaCo0.5Ni0.5O3±Î´ is the most suitable for the fabrication of oxide electrodes and wiring, though La1-x Sr x CoO3±Î´ and La1-x Sr x MnO3±Î´ also exhibit high electronic conductivity at R.T., with maximum electrical conductivities of 4.4 × 103 S cm-1 for La0.5Sr0.5CoO3±Î´ and 1.5 × 103 S cm-1 for La0.6Sr0.4MnO3±Î´ because oxygen release occurs in La1-x Sr x CoO3±Î´ as elevating temperature and the electrical conductivity of La0.6Sr0.4MnO3±Î´ slightly decreases at temperatures above 400 K.

8.
Nanomaterials (Basel) ; 13(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839150

RESUMO

Recently, the n-type TiS2/organic hybrid superlattice (TOS) was found to have efficient thermoelectric (TE) properties above and near room temperature (RT). However, its TE performance and power generation at the temperature gradient below RT have not yet been reported. In this work, the TE performance and power generation of the TOS above and below RT were investigated. The electrical conductivity (σ) and Seebeck coefficient (S) were recorded as a function of temperature within the range 233-323 K. The generated power at temperature gradients above (at ΔT = 20 and 40 K) and below (at ΔT = -20 and -40 K) RT was measured. The recorded σ decreased by heating the TOS, while |S| increased. The resulting power factor recorded ~100 µW/mK2 at T = 233 K with a slight increase following heating. The charge carrier density and Hall mobility of the TOS showed opposite trends. The first factor significantly decreased after heating, while the second one increased. The TE-generated power of a single small module made of the TOS at ΔT = 20 and 40 K recorded 10 and 45 nW, respectively. Surprisingly, the generated power below RT is several times higher than that generated above RT. It reached 140 and 350 nW at ΔT = -20 and -40 K, respectively. These remarkable results indicate that TOS might be appropriate for generating TE power in cold environments below RT. Similar TE performances were recorded from both TOS films deposited on solid glass and flexible polymer, indicating TOS pertinence for flexible TE devices.

9.
Inorg Chem ; 51(17): 9259-64, 2012 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-22897661

RESUMO

To determine the applicability of LaCo(1-x)Ni(x)O(3) in a conductive material for electrical wiring, the dependence of the electronic transport property on the Ni content is investigated via Hall effect measurements, Rietveld analyses, and band-structure calculations. Ni doping (50 mol %) into the Co sites realizes a high electrical conductivity of 1.9 × 10(3) S/cm, which is an unexpectedly high value for a LaCo(1-x)Ni(x)O(3) system, at room temperature due to the high carrier concentration of 2.2 × 10(22) cm(-3) and the small effective mass of 0.1 m(e). In addition, the high electrical conductivity is maintained from room temperature to 900 °C; that is, the temperature coefficient of the conductivity is smaller than that of standard metals. Thus, the results indicate that LaCo(0.5)Ni(0.5)O(3) is suitable as a conductive material for electrical wiring at high temperatures in air.

10.
Phys Chem Chem Phys ; 14(45): 15641-4, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23090033

RESUMO

We investigated the thermoelectric properties of titanium sulphene, namely, few-layered TiS(2) nanosheets, by using density functional theory and the Boltzmann transport equations. The Seebeck coefficient of titanium sulphene was found to increase if the thickness fell below 14 triple layers (~8 nm) and for the monolayer becomes 40% larger than that of the bulk TiS(2). This behavior is attributed to an enhancement in the density of states near the conduction band minimum in the monolayer. Moreover, the acoustic phonon band of the monolayer is more flat than that of the bulk, which results in a 37% reduction of the acoustic phonon group velocity and was beneficial for a low lattice thermal conductivity. Therefore, the combined effects from quantum confinement of both electrons and phonons could lead to a significant enhancement in thermoelectric performance in the two-dimensional titanium sulphene.

11.
J Nanosci Nanotechnol ; 12(3): 2054-8, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755020

RESUMO

A self-assembled-monolayers (SAMs) modified anodic aluminum oxide (AAO) membranes were used to generate crystalline strontium titanate (SrTiO3) nanotube arrays, which have been characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM), coupled with electron diffraction analysis. The possible formation mechanism can be explained by the induced nucleation effect of the functional headgroups in the SAMs.

12.
J Nanosci Nanotechnol ; 12(3): 2685-90, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22755109

RESUMO

SrTiO3 nanoplates are obtained by the precipitation of an aqueous gel suspension. The gel suspension is prepared by hydrolysis of a Titanium isopropoxide [Ti(OCH(CH3)2)4] solution with NaOH and the addition of Sr(NO3)2. The amount of additive oleic acid plays a significant role in the formation of pure SrTiO3 phase with specific morphologies. The results of transmission electron microscopy (TEM) and electron diffraction (ED) investigations provide evidences that the oriented aggregation of small nanocubes is the dominant growth mechanism for the formation of the observed SrTiO3 nanoplates. The primary nanocrystals are self-assembled in a highly oriented fashion, producing defective single-crystal particles. The above results show that the directional aggregation process can be controlled by changing the temperature of the suspension as well as by adding organic molecules, by which the SrTiO3 particles can be obtained with a controlled size and shape.

13.
ACS Appl Mater Interfaces ; 14(1): 1045-1055, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965726

RESUMO

Wearable thermoelectric generators (w-TEGs) can incessantly convert body heat into electricity to power electronics. However, the low efficiency of thermoelectric materials, tiny terminal temperature difference, rigidity, and negligence of lateral heat transfer preclude broad utilization of w-TEGs. In this work, we employ finite element simulation to find the key factors for simultaneous realization of flexibility and ultrahigh normalized power density. Using melamine foam with an ultralow thermal conductivity (0.03 W/m K) as the encapsulation material, a novel lightweight π-type w-TEG with no heatsink and excellent stretchability, comfortability, processability, and cost efficiency has been fabricated. At an ambient temperature of 24 °C, the maximum power density of the w-TEG reached 7 µW/cm2 (sitting) and 29 µW/cm2 (walking). Under suitable heat exchange conditions (heatsink with 1 m/s air velocity), 32 pairs of w-TEGs can generate 66 mV voltage and 60 µW/cm2 power density. The output performance of our TEG is remarkably superior to that of previously reported w-TEGs. Besides, the practicality of our w-TEG was showcased by successfully driving a quartz watch at room temperature.

14.
Nanomaterials (Basel) ; 12(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35957013

RESUMO

Polypyrrole (PPy) is a conducting polymer with attractive thermoelectric (TE) properties. It is simple to fabricate and modify its morphology for enhanced electrical conductivity. However, such improvement is still limited to considerably enhancing TE performance. In this case, a single-wall carbon nanotube (SWCNT), which has ultrathin diameters and exhibits semi-metallic electrical conductivity, might be a proper candidate to be combined with PPy as a core shell one-dimensional (1D) nanocomposite for higher TE power generation. In this work, core shell nanocomposites based on SWCNT/PPy were fabricated. Various amounts of pyrrole (Py), which are monomer sources for PPy, were coated on SWCNT, along with methyl orange (MO) as a surfactant and ferric chloride as an initiator. The optimum value of Py for maximum TE performance was determined. The results showed that the SWCNT acted as a core template to direct the self-assembly of PPy and also to further enhance TE performance. The TE power factor, PF, and figure of merit, zT, values of the pure PPy were initially recorded as ~1 µW/mK2 and 0.0011, respectively. These values were greatly increased to 360 µW/mK2 and 0.09 for the optimized core shell nanocomposite sample. The TE power generation characteristics of the fabricated single-leg module of the optimized sample were also investigated and confirmed these findings. This enhancement was attributed to the uniform coating and good interaction between PPy polymer chains and walls of the SWCNT through π-π stacking. The significant enhancement in the TE performance of SWCNT/PPy nanocomposite is found to be superior compared to those reported in similar composites, which indicates that this nanocomposite is a suitable and scalable TE material for TE power generation.

15.
Adv Mater ; 34(7): e2104786, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34837249

RESUMO

Aiming to overcome both the structural and commercial limitations of flexible thermoelectric power generators, an efficient room-temperature aqueous selenization reaction that can be completed in air within less than 1 min, to directly fabricate thin ß-Ag2 Se films consisting of perfectly crystalline and large columnar grains with both in-plane randomness and out-of-plane [201] preferred orientation, is designed. A high power factor (PF) of 2590 ± 414 µW m-1 K-2 and a figure-of-merit (zT) of 1.2 ± 0.42 are obtained from a sample with a thickness of ≈1 µm. The maximum output power density of the best 4-leg thermoelectric generator sample reach 27.6 ± 1.95 and 124 ± 8.78 W m-2 at room temperature with 30 and 60 K temperature differences, respectively, which may be useful in future flexible thermoelectric devices.

16.
Small ; 7(12): 1683-9, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21567941

RESUMO

A new approach to control the release of encapsulated materials from liposomes by using thermosensitive block copolymers and magnetic nanoparticles is reported. Hydrophobized Fe(3) O(4) nanoparticles are synthesized via the hydrothermal process, and can be incorporated into liposomal membranes by hydrophobic interactions. Thermosensitive block copolymers of (2-ethoxy)ethoxyethyl vinyl ether (EOEOVE) and octadecyl vinyl ether (ODVE) are synthesized by living cationic polymerization. The poly(EOEOVE) block acts as a temperature-sensitive moiety, and the poly(ODVE) block acts as an anchor unit. Hybrid liposomes encapsulating pyranine, a water-soluble fluorescent dye, are prepared from mixtures of phospholipids, the hydrophobized Fe(3) O(4) nanoparticles, and the copolymer. While the hybrid liposomes released negligible amounts of pyranine under static conditions, the release of pyranine is drastically enhanced by alternating magnetic field irradiation. The magnetically induced release is attributed to the transition of the thermosensitive segment of the copolymer, which is caused by the release of localized heat from the Fe(3) O(4) nanoparticles under magnetic stimuli, rather than the rupture of the capsules. The release rate of the hybrid capsules is controlled by varying the amount of Fe(3) O(4) nanoparticles embedded into the liposomes.


Assuntos
Compostos Férricos/química , Lipossomos/química , Nanopartículas/química , Polímeros/química , Sulfonatos de Arila/química , Portadores de Fármacos/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Temperatura , Difração de Raios X
17.
Sci Technol Adv Mater ; 11(4): 044306, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27877347

RESUMO

Thermal conductivity is one of the key parameters in the figure of merit of thermoelectric materials. Over the past decade, most progress in thermoelectric materials has been made by reducing their thermal conductivity while preserving their electrical properties. The phonon scattering mechanisms involved in these strategies are reviewed here and divided into three groups, including (i) disorder or distortion of unit cells, (ii) resonant scattering by localized rattling atoms and (iii) interface scattering. In addition, we propose construction of a 'natural superlattice' in thermoelectric materials by intercalating an MX layer into the van der Waals gap of a layered TX2 structure which has a general formula of (MX)1+x (TX2) n (M=Pb, Bi, Sn, Sb or a rare earth element; T=Ti, V, Cr, Nb or Ta; X=S or Se and n=1, 2, 3). We demonstrate that one of the intercalation compounds (SnS)1.2(TiS2)2 has better thermoelectric properties compared with pure TiS2 in the direction parallel to the layers, as the electron mobility is maintained while the phonon transport is significantly suppressed owing to the reduction in the transverse phonon velocities.

18.
ACS Appl Mater Interfaces ; 12(37): 41687-41695, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32805870

RESUMO

Layered 1T-type TiS2 powders were pretreated by an ethanol-based shear pulverization process, which showed outstanding effectiveness in reducing the average grain size and narrowing the size distribution while maintaining high crystallinity and plate-shaped morphology. The resulting bulk ceramics densified by spark plasma sintering possessed a highly (00l)-oriented texture and pronounced anisotropy. They showed a noticeably increased σ and an unaffected S in the in-plane direction due to the increased carrier mobility µ and the constant carrier concentration n, which resulted in a significant enhancement of the in-plane power factor, optimally to an unprecedented high level of 1.6-1.8 mW m-1 K-2 in a range of 323-673 K. Meanwhile, the lattice thermal conductivity was reduced by approximately 20% due to the intensified grain boundary phonon scattering that overwhelmed the effect due to texturing. These effects not only demonstrated the powder shear pulverization pretreatment as a facial and reliable route toward a high-textured TiS2 but also enabled a remarkable increase of ZT record for TiS2-based thermoelectrics (TEs) to approximately 0.7 at 673 K, indicating clearly the significant effect of texture engineering on TE performance.

19.
Chem Commun (Camb) ; 56(44): 5961-5964, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32347245

RESUMO

Polycrystalline bulk of TiS2 with a remarkable enhancement of the texture degree was obtained by densifying powders refined by a liquid-based mechanical exfoliation process. As compared to the pristine TiS2, the in-(a-b)-plane mobility in the exfoliation sample increased from 5.9 to 9.8 cm2 V-1 s-1 with an almost unaffected carrier concentration, in spite of the increased scattering due to grain boundaries. As a result, a tremendously high power factor of up to 16 µW cm-1 K-2 at 673 K was achieved, which is 60% higher than that of the pristine TiS2 and is the highest for bulk TiS2 at high temperatures.

20.
iScience ; 23(1): 100753, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31884164

RESUMO

Silver selenide is considered as a promising room temperature thermoelectric material due to its excellent performance and high abundance. However, the silver selenide-based flexible film is still behind in thermoelectric performance compared with its bulk counterpart. In this work, the composition of paper-supported silver selenide film was successfully modulated through changing reactant ratio and annealing treatment. In consequence, the power factor value of 2450.9 ± 364.4 µW/(mK2) at 303 K, which is close to that of state-of-the-art bulk Ag2Se has been achieved. Moreover, a thermoelectric device was fabricated after optimizing the length of annealed silver selenide film via numerical simulation. At temperature difference of 25 K, the maximum power density of this device reaches 5.80 W/m2, which is superior to that of previous film thermoelectric devices. Theoretically and experimentally, this work provides an effective way to achieve silver-selenide-based flexible thermoelectric film and device with high performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA