Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 316(5): G615-G622, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30817181

RESUMO

Esophageal acid sensory signals are transmitted by both vagal and spinal pathways to the cerebral cortex. The influence and interplay of these pathways on esophageal acid-related functional connectivity has been elusive. Our aim was to evaluate the esophageal acid exposure-related effect on the anterior cingulate cortex (ACC) functional connectivity networks using functional MRI-guided functional connectivity MRI (fcMRI) analysis. We studied six Sprague-Dawley rats for fcMRI experiments under dexmedetomidine hydrochloride anesthesia. Each rat was scanned for 6 min before and after esophageal hydrochloric acid infusion (0.1 N, 0.2 ml/min). The protocol was repeated before and after bilateral cervical vagotomy on the same rat. Seed-based fcMRI analysis was used to examine ACC networks and acid-induced network alterations. Three-factor repeated-measures ANOVA analysis among all four subgroups revealed that the interaction of acid infusion and bilateral vagotomy was mainly detected in the hypothalamus, insula, left secondary somatosensory cortex, left parietal cortex, and right thalamus in the left ACC network. In the right ACC network, this interaction effect was detected in the caudate putamen, insula, motor, primary somatosensory cortex, secondary somatosensory cortex, and thalamic regions. These regions in the ACC networks showed decreased intranetwork connectivity due to acid infusion. However, after bilateral vagotomy, intranetwork connectivity strength inversed and became stronger following postvagotomy acid infusion. Signals transmitted through both the vagal nerve and spinal nerves play a role in esophageal acid-related functional connectivity of the ACC. The vagal signals appear to dampen the acid sensation-related functional connectivity of the ACC networks. NEW & NOTEWORTHY These studies show that esophageal acid-induced brain functional connectivity changes are vagally mediated and suggest that signals transmitted through both the vagal nerve and spinal nerves play a role in esophageal acid-related functional connectivity of the anterior cingulate cortex. This paper focuses on the development of a novel rat functional MRI model fostering improved understanding of acid-related esophageal disorders.


Assuntos
Esôfago , Giro do Cíngulo , Ácido Clorídrico/administração & dosagem , Nervos Espinhais/fisiologia , Vagotomia/métodos , Nervo Vago/fisiologia , Animais , Mapeamento Encefálico , Esôfago/efeitos dos fármacos , Esôfago/inervação , Esôfago/fisiologia , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiologia , Imageamento por Ressonância Magnética/métodos , Vias Neurais/fisiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA