Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 37(19-20): 913-928, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37932011

RESUMO

Addiction to the WRN helicase is a unique vulnerability of human cancers with high levels of microsatellite instability (MSI-H). However, while prolonged loss of WRN ultimately leads to cell death, little is known about how MSI-H cancers initially respond to acute loss of WRN-knowledge that would be helpful for informing clinical development of WRN targeting therapy, predicting possible resistance mechanisms, and identifying useful biomarkers of successful WRN inhibition. Here, we report the construction of an inducible ligand-mediated degradation system in which the stability of endogenous WRN protein can be rapidly and specifically tuned, enabling us to track the complete sequence of cellular events elicited by acute loss of WRN function. We found that WRN degradation leads to immediate accrual of DNA damage in a replication-dependent manner that curiously did not robustly engage checkpoint mechanisms to halt DNA synthesis. As a result, WRN-degraded MSI-H cancer cells accumulate DNA damage across multiple replicative cycles and undergo successive rounds of increasingly aberrant mitoses, ultimately triggering cell death. Of potential therapeutic importance, we found no evidence of any generalized mechanism by which MSI-H cancers could adapt to near-complete loss of WRN. However, under conditions of partial WRN degradation, addition of low-dose ATR inhibitor significantly increased their combined efficacy to levels approaching full inactivation of WRN. Overall, our results provide the first comprehensive view of molecular events linking upstream inhibition of WRN to subsequent cell death and suggest that dual targeting of WRN and ATR might be a useful strategy for treating MSI-H cancers.


Assuntos
Replicação do DNA , Neoplasias , Humanos , Replicação do DNA/genética , DNA Helicases/metabolismo , Repetições de Microssatélites , Dano ao DNA , Neoplasias/tratamento farmacológico , Neoplasias/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Helicase da Síndrome de Werner/genética , Helicase da Síndrome de Werner/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
2.
Mol Cell ; 82(19): 3538-3552.e5, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36075220

RESUMO

DNA becomes single stranded (ssDNA) during replication, transcription, and repair. Transiently formed ssDNA segments can adopt alternative conformations, including cruciforms, triplexes, and quadruplexes. To determine whether there are stable regions of ssDNA in the human genome, we utilized S1-END-seq to convert ssDNA regions to DNA double-strand breaks, which were then processed for high-throughput sequencing. This approach revealed two predominant non-B DNA structures: cruciform DNA formed by expanded (TA)n repeats that accumulate in microsatellite unstable human cancer cell lines and DNA triplexes (H-DNA) formed by homopurine/homopyrimidine mirror repeats common across a variety of cell lines. We show that H-DNA is enriched during replication, that its genomic location is highly conserved, and that H-DNA formed by (GAA)n repeats can be disrupted by treatment with a (GAA)n-binding polyamide. Finally, we show that triplex-forming repeats are hotspots for mutagenesis. Our results identify dynamic DNA secondary structures in vivo that contribute to elevated genome instability.


Assuntos
DNA Cruciforme , Nylons , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Humanos , Conformação de Ácido Nucleico
3.
PLoS Genet ; 17(1): e1009322, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493195

RESUMO

DNA polymerase delta (Pol δ) plays several essential roles in eukaryotic DNA replication and repair. At the replication fork, Pol δ is responsible for the synthesis and processing of the lagging-strand. At replication origins, Pol δ has been proposed to initiate leading-strand synthesis by extending the first Okazaki fragment. Destabilizing mutations in human Pol δ subunits cause replication stress and syndromic immunodeficiency. Analogously, reduced levels of Pol δ in Saccharomyces cerevisiae lead to pervasive genome instability. Here, we analyze how the depletion of Pol δ impacts replication origin firing and lagging-strand synthesis during replication elongation in vivo in S. cerevisiae. By analyzing nascent lagging-strand products, we observe a genome-wide change in both the establishment and progression of replication. S-phase progression is slowed in Pol δ depletion, with both globally reduced origin firing and slower replication progression. We find that no polymerase other than Pol δ is capable of synthesizing a substantial amount of lagging-strand DNA, even when Pol δ is severely limiting. We also characterize the impact of impaired lagging-strand synthesis on genome integrity and find increased ssDNA and DNA damage when Pol δ is limiting; these defects lead to a strict dependence on checkpoint signaling and resection-mediated repair pathways for cellular viability.


Assuntos
DNA Polimerase III/genética , Replicação do DNA/genética , Antígeno Nuclear de Célula em Proliferação/genética , Reparo de DNA por Recombinação/genética , Dano ao DNA/genética , Reparo do DNA/genética , Genes cdc/genética , Humanos , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
PLoS Genet ; 16(5): e1008755, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32379761

RESUMO

During eukaryotic DNA replication, DNA polymerase alpha/primase (Pol α) initiates synthesis on both the leading and lagging strands. It is unknown whether leading- and lagging-strand priming are mechanistically identical, and whether Pol α associates processively or distributively with the replisome. Here, we titrate cellular levels of Pol α in S. cerevisiae and analyze Okazaki fragments to study both replication initiation and ongoing lagging-strand synthesis in vivo. We observe that both Okazaki fragment initiation and the productive firing of replication origins are sensitive to Pol α abundance, and that both processes are disrupted at similar Pol α concentrations. When the replisome adaptor protein Ctf4 is absent or cannot interact with Pol α, lagging-strand initiation is impaired at Pol α concentrations that still support normal origin firing. Additionally, we observe that activation of the checkpoint becomes essential for viability upon severe depletion of Pol α. Using strains in which the Pol α-Ctf4 interaction is disrupted, we demonstrate that this checkpoint requirement is not solely caused by reduced lagging-strand priming. Our results suggest that Pol α recruitment for replication initiation and ongoing lagging-strand priming are distinctly sensitive to the presence of Ctf4. We propose that the global changes we observe in Okazaki fragment length and origin firing efficiency are consistent with distributive association of Pol α at the replication fork, at least when Pol α is limiting.


Assuntos
DNA Polimerase I/metabolismo , DNA Primase/metabolismo , Replicação do DNA , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/fisiologia , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/fisiologia , DNA , Replicação do DNA/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Organismos Geneticamente Modificados , Ligação Proteica , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Elongação da Transcrição Genética/fisiologia
5.
bioRxiv ; 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37662356

RESUMO

Addiction to the WRN helicase is a unique vulnerability of human cancers with high levels of microsatellite instability (MSI-H). However, while prolonged loss of WRN ultimately leads to cell death, little is known about how MSI-H cancers initially respond to acute loss of WRN, knowledge that would be helpful for informing clinical development of WRN-targeting therapy, predicting possible resistance mechanisms, and identifying useful biomarkers of successful WRN inhibition. Here, we report the construction of an inducible ligand-mediated degradation system wherein the stability of endogenous WRN protein can be rapidly and specifically tuned, enabling us to track the complete sequence of cellular events elicited by acute loss of WRN function. We find that WRN degradation leads to immediate accrual of DNA damage in a replication-dependent manner that curiously did not robustly engage checkpoint mechanisms to halt DNA synthesis. As a result, WRN-degraded MSI-H cancer cells accumulate DNA damage across multiple replicative cycles and undergo successive rounds of increasingly aberrant mitoses, ultimately triggering cell death. Of potential therapeutic importance, we find no evidence of any generalized mechanism by which MSI-H cancers could adapt to near-complete loss of WRN. However, under conditions of partial WRN degradation, addition of low dose ATR inhibitor significantly increased their combined efficacy to levels approaching full inactivation of WRN. Overall, our results provided the first comprehensive view of molecular events linking upstream inhibition of WRN to subsequent cell death and suggested a potential therapeutical rationale for dual targeting of WRN and ATR.

6.
G3 (Bethesda) ; 11(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34849819

RESUMO

During lagging-strand synthesis, strand-displacement synthesis by DNA polymerase delta (Pol ∂), coupled to nucleolytic cleavage of DNA flap structures, produces a nick-translation reaction that replaces the DNA at the 5' end of the preceding Okazaki fragment. Previous work following depletion of DNA ligase I in Saccharomyces cerevisae suggests that DNA-bound proteins, principally nucleosomes and the transcription factors Abf1/Rap1/Reb1, pose a barrier to Pol ∂ synthesis and thereby limit the extent of nick translation in vivo. However, the extended ligase depletion required for these experiments could lead to ongoing, non-physiological nick translation. Here, we investigate nick translation by analyzing Okazaki fragments purified after transient nuclear depletion of DNA ligase I in synchronized or asynchronous Saccharomyces cerevisiae cultures. We observe that, even with a short ligase depletion, Okazaki fragment termini are enriched around nucleosomes and Abf1/Reb1/Rap1-binding sites. However, protracted ligase depletion leads to a global change in the location of these termini, moving them toward nucleosome dyads from a more upstream location and further enriching termini at Abf1/Reb1/Rap1-binding sites. In addition, we observe an under-representation of DNA derived from DNA polymerase alpha-the polymerase that initiates Okazaki fragment synthesis-around the sites of Okazaki termini obtained from very brief ligase depletion. Our data suggest that, while nucleosomes and transcription factors do limit strand-displacement synthesis by Pol ∂ in vivo, post-replicative nick translation can occur at unligated Okazaki fragment termini such that previous analyses represent an overestimate of the extent of nick translation occurring during normal lagging-strand synthesis.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , DNA Ligase Dependente de ATP/genética , DNA Polimerase III/genética , Replicação do DNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA