Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Biol Chem ; 292(14): 5970-5980, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28232482

RESUMO

Pyridoxal 5'-phosphate (PLP) is a fundamental, multifunctional enzyme cofactor used to catalyze a wide variety of chemical reactions involved in amino acid metabolism. PLP-dependent enzymes optimize specific chemical reactions by modulating the electronic states of PLP through distinct active site environments. In aspartate aminotransferase (AAT), an extended hydrogen bond network is coupled to the pyridinyl nitrogen of the PLP, influencing the electrophilicity of the cofactor. This network, which involves residues Asp-222, His-143, Thr-139, His-189, and structural waters, is located at the edge of PLP opposite the reactive Schiff base. We demonstrate that this hydrogen bond network directly influences the protonation state of the pyridine nitrogen of PLP, which affects the rates of catalysis. We analyzed perturbations caused by single- and double-mutant variants using steady-state kinetics, high resolution X-ray crystallography, and quantum chemical calculations. Protonation of the pyridinyl nitrogen to form a pyridinium cation induces electronic delocalization in the PLP, which correlates with the enhancement in catalytic rate in AAT. Thus, PLP activation is controlled by the proximity of the pyridinyl nitrogen to the hydrogen bond microenvironment. Quantum chemical calculations indicate that Asp-222, which is directly coupled to the pyridinyl nitrogen, increases the pKa of the pyridine nitrogen and stabilizes the pyridinium cation. His-143 and His-189 also increase the pKa of the pyridine nitrogen but, more significantly, influence the position of the proton that resides between Asp-222 and the pyridinyl nitrogen. These findings indicate that the second shell residues directly enhance the rate of catalysis in AAT.


Assuntos
Aspartato Aminotransferases/química , Modelos Moleculares , Fosfato de Piridoxal/química , Animais , Aspartato Aminotransferases/genética , Aspartato Aminotransferases/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Domínios Proteicos , Fosfato de Piridoxal/genética , Fosfato de Piridoxal/metabolismo , Sus scrofa
2.
Proc Natl Acad Sci U S A ; 112(18): 5673-8, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902526

RESUMO

Human carbonic anhydrase II (HCA II) uses a Zn-bound OH(-)/H2O mechanism to catalyze the reversible hydration of CO2. This catalysis also involves a separate proton transfer step, mediated by an ordered solvent network coordinated by hydrophilic residues. One of these residues, Tyr7, was previously shown to be deprotonated in the neutron crystal structure at pH 10. This observation indicated that Tyr7 has a perturbed pKa compared with free tyrosine. To further probe the pKa of this residue, NMR spectroscopic measurements of [(13)C]Tyr-labeled holo HCA II (with active-site Zn present) were preformed to titrate all Tyr residues between pH 5.4-11.0. In addition, neutron studies of apo HCA II (with Zn removed from the active site) at pH 7.5 and holo HCA II at pH 6 were conducted. This detailed interrogation of tyrosines in HCA II by NMR and neutron crystallography revealed a significantly lowered pKa of Tyr7 and how pH and Tyr proximity to Zn affect hydrogen-bonding interactions.


Assuntos
Anidrases Carbônicas/química , Cristalografia por Raios X/métodos , Espectroscopia de Ressonância Magnética/métodos , Nêutrons , Tirosina/química , Catálise , Domínio Catalítico , Cátions , Enzimas/química , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Conformação Proteica , Prótons , Eletricidade Estática , Água/química
3.
Biochemistry ; 56(20): 2529-2532, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28481095

RESUMO

A 1.1 Å resolution, room-temperature X-ray structure and a 2.1 Å resolution neutron structure of a chitin-degrading lytic polysaccharide monooxygenase domain from the bacterium Jonesia denitrificans (JdLPMO10A) show a putative dioxygen species equatorially bound to the active site copper. Both structures show an elongated density for the dioxygen, most consistent with a Cu(II)-bound peroxide. The coordination environment is consistent with Cu(II). In the neutron and X-ray structures, difference maps reveal the N-terminal amino group, involved in copper coordination, is present as a mixed ND2 and ND-, suggesting a role for the copper ion in shifting the pKa of the amino terminus.


Assuntos
Cobre/química , Oxigenases de Função Mista/química , Oxigênio/química , Polissacarídeos/química , Domínio Catalítico , Cristalografia por Raios X , Conformação Proteica , Prótons
4.
Proc Natl Acad Sci U S A ; 109(38): 15301-6, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22949690

RESUMO

The 1.1 Å, ultrahigh resolution neutron structure of hydrogen/deuterium (H/D) exchanged crambin is reported. Two hundred ninety-nine out of 315, or 94.9%, of the hydrogen atom positions in the protein have been experimentally derived and resolved through nuclear density maps. A number of unconventional interactions are clearly defined, including a potential O─H…π interaction between a water molecule and the aromatic ring of residue Y44, as well as a number of potential C─H…O hydrogen bonds. Hydrogen bonding networks that are ambiguous in the 0.85 Å ultrahigh resolution X-ray structure can be resolved by accurate orientation of water molecules. Furthermore, the high resolution of the reported structure has allowed for the anisotropic description of 36 deuterium atoms in the protein. The visibility of hydrogen and deuterium atoms in the nuclear density maps is discussed in relation to the resolution of the neutron data.


Assuntos
Cristalografia/métodos , Hidrogênio/química , Nêutrons , Proteínas de Plantas/química , Anisotropia , Bioquímica/métodos , Brassica/metabolismo , Cristalização , Deutério/química , Ligação de Hidrogênio , Substâncias Macromoleculares , Conformação Molecular , Difração de Nêutrons/métodos , Solventes/química , Água/química
5.
Biochemistry ; 53(43): 6725-7, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25271401

RESUMO

High selectivity of cyclic-nucleotide binding (CNB) domains for cAMP and cGMP are required for segregating signaling pathways; however, the mechanism of selectivity remains unclear. To investigate the mechanism of high selectivity in cGMP-dependent protein kinase (PKG), we determined a room-temperature joint X-ray/neutron (XN) structure of PKG Iß CNB-B, a domain 200-fold selective for cGMP over cAMP, bound to cGMP (2.2 Å), and a low-temperature X-ray structure of CNB-B with cAMP (1.3 Å). The XN structure directly describes the hydrogen bonding interactions that modulate high selectivity for cGMP, while the structure with cAMP reveals that all these contacts are disrupted, explaining its low affinity for cAMP.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/química , Ativadores de Enzimas/química , Nêutrons , Espalhamento de Radiação , Animais , AMP Cíclico/química , GMP Cíclico/química , Desenho de Fármacos , Ativação Enzimática , Humanos , Ligação de Hidrogênio
6.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 354-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531469

RESUMO

The crystal structures of protein-nucleic acid complexes are commonly determined using selenium-derivatized proteins via MAD or SAD phasing. Here, the first protein-nucleic acid complex structure determined using selenium-derivatized nucleic acids is reported. The RNase H-RNA/DNA complex is used as an example to demonstrate the proof of principle. The high-resolution crystal structure indicates that this selenium replacement results in a local subtle unwinding of the RNA/DNA substrate duplex, thereby shifting the RNA scissile phosphate closer to the transition state of the enzyme-catalyzed reaction. It was also observed that the scissile phosphate forms a hydrogen bond to the water nucleophile and helps to position the water molecule in the structure. Consistently, it was discovered that the substitution of a single O atom by a Se atom in a guide DNA sequence can largely accelerate RNase H catalysis. These structural and catalytic studies shed new light on the guide-dependent RNA cleavage.


Assuntos
Proteínas de Bactérias/química , DNA de Cadeia Simples/química , Escherichia coli/química , Oligonucleotídeos/química , RNA/química , Ribonuclease H/química , Selênio/química , Proteínas de Bactérias/genética , Pareamento de Bases , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/genética , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ribonuclease H/genética
7.
Biochemistry ; 51(39): 7726-32, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22963370

RESUMO

Snapshots of three consecutive steps in the proteolytic reaction of HIV-1 protease (PR) were obtained in crystal structures at resolutions of 1.2-1.4 Å. Structures of wild-type protease and two mutants (PR(V32I) and PR(I47V)) with V32I and I47V substitutions, which are common in drug resistance, reveal the gem-diol tetrahedral intermediate, the separating N- and C-terminal products, and the C-terminal product of an autoproteolytic peptide. These structures represent three stages in the reaction pathway and shed light on the reaction mechanism. The near-atomic-resolution geometric details include a short hydrogen bond between the intermediate and the outer carboxylate oxygen of one catalytic Asp25 that is conserved in all three structures. The two products in the complex with mutant PR(I47V) have a 2.2 Å separation of the amide and carboxyl carbon of the adjacent ends, suggesting partial cleavage prior to product release. The complex of mutant PR(V32I) with a single C-terminal product shows density for water molecules in the other half of the binding site, including a partial occupancy water molecule interacting with the product carboxylate end and the carbonyl oxygen of one conformation of Gly27, which suggests a potential role of Gly27 in recycling from the product complex to the ligand-free enzyme. These structural details at near-atomic resolution enhance our understanding of the reaction pathway and will assist in the design of mechanism-based inhibitors as antiviral agents.


Assuntos
Protease de HIV/química , HIV-1/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Protease de HIV/genética , Protease de HIV/metabolismo , HIV-1/química , HIV-1/genética , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
8.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 7): 854-60, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22751671

RESUMO

Post-translational protein phosphorylation by protein kinase A (PKA) is a ubiquitous signalling mechanism which regulates many cellular processes. A low-temperature X-ray structure of the ternary complex of the PKA catalytic subunit (PKAc) with ATP and a 20-residue peptidic inhibitor (IP20) at the physiological Mg(2+) concentration of ∼0.5 mM (LT PKA-MgATP-IP20) revealed a single metal ion in the active site. The lack of a second metal in LT PKA-MgATP-IP20 renders the ß- and γ-phosphoryl groups of ATP very flexible, with high thermal B factors. Thus, the second metal is crucial for tight positioning of the terminal phosphoryl group for transfer to a substrate, as demonstrated by comparison of the former structure with that of the LT PKA-Mg(2)ATP-IP20 complex obtained at high Mg(2+) concentration. In addition to its kinase activity, PKAc is also able to slowly catalyze the hydrolysis of ATP using a water molecule as a substrate. It was found that ATP can be readily and completely hydrolyzed to ADP and a free phosphate ion in the crystals of the ternary complex PKA-Mg(2)ATP-IP20 by X-ray irradiation at room temperature. The cleavage of ATP may be aided by X-ray-generated free hydroxyl radicals, a very reactive chemical species, which move rapidly through the crystal at room temperature. The phosphate anion is clearly visible in the electron-density maps; it remains in the active site but slides about 2 Šfrom its position in ATP towards Ala21 of IP20, which mimics the phosphorylation site. The phosphate thus pushes the peptidic inhibitor away from the product ADP, while resulting in dramatic conformational changes of the terminal residues 24 and 25 of IP20. X-ray structures of PKAc in complex with the nonhydrolysable ATP analogue AMP-PNP at both room and low temperature demonstrated no temperature effects on the conformation and position of IP20.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Hidrólise , Magnésio/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura
9.
J Am Chem Soc ; 134(36): 14726-9, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22928733

RESUMO

Carbonic anhydrases (CAs) catalyze the hydration of CO(2) forming HCO(3)(-) and a proton, an important reaction for many physiological processes including respiration, fluid secretion, and pH regulation. As such, CA isoforms are prominent clinical targets for treating various diseases. The clinically used acetazolamide (AZM) is a sulfonamide that binds with high affinity to human CA isoform II (HCA II). There are several X-ray structures available of AZM bound to various CA isoforms, but these complexes do not show the charged state of AZM or the hydrogen atom positions of the protein and solvent. Neutron diffraction is a useful technique for directly observing H atoms and the mapping of H-bonding networks that can greatly contribute to rational drug design. To this end, the neutron structure of H/D exchanged HCA II crystals in complex with AZM was determined. The structure reveals the molecular details of AZM binding and the charged state of the bound drug. This represents the first determined neutron structure of a clinically used drug bound to its target.


Assuntos
Acetazolamida/química , Anidrase Carbônica II/química , Hidrogênio/química , Preparações Farmacêuticas/química , Sítios de Ligação , Anidrase Carbônica II/metabolismo , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Difração de Nêutrons
10.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 12): 1482-7, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23192028

RESUMO

Inorganic pyrophosphatase (IPPase) from the archaeon Thermococcus thioreducens was cloned, overexpressed in Escherichia coli, purified and crystallized in restricted geometry, resulting in large crystal volumes exceeding 5 mm3. IPPase is thermally stable and is able to resist denaturation at temperatures above 348 K. Owing to the high temperature tolerance of the enzyme, the protein was amenable to room-temperature manipulation at the level of protein preparation, crystallization and X-ray and neutron diffraction analyses. A complete synchrotron X-ray diffraction data set to 1.85 Šresolution was collected at room temperature from a single crystal of IPPase (monoclinic space group C2, unit-cell parameters a=106.11, b=95.46, c=113.68 Å, α=γ=90.0, ß=98.12°). As large-volume crystals of IPPase can be obtained, preliminary neutron diffraction tests were undertaken. Consequently, Laue diffraction images were obtained, with reflections observed to 2.1 Šresolution with I/σ(I) greater than 2.5. The preliminary crystallographic results reported here set in place future structure-function and mechanism studies of IPPase.


Assuntos
Proteínas Arqueais/química , Pirofosfatase Inorgânica/química , Thermococcus/enzimologia , Proteínas Arqueais/isolamento & purificação , Cristalização , Cristalografia por Raios X , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/isolamento & purificação , Difração de Nêutrons/métodos , Difração de Raios X/métodos
11.
Artigo em Inglês | MEDLINE | ID: mdl-22297981

RESUMO

The room-temperature (RT) X-ray structure of H/D-exchanged crambin is reported at 0.85 Å resolution. As one of the very few proteins refined with anisotropic atomic displacement parameters at two temperatures, the dynamics of atoms in the RT and 100 K structures are compared. Neutron diffraction data from an H/D-exchanged crambin crystal collected at the Protein Crystallography Station (PCS) showed diffraction beyond 1.1 Å resolution. This is the highest resolution neutron diffraction reported to date for a protein crystal and will reveal important details of the anisotropic motions of H and D atoms in protein structures.


Assuntos
Cristalografia por Raios X/métodos , Difração de Nêutrons/métodos , Proteínas/análise , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas/química , Temperatura , Fatores de Tempo
12.
NPJ Microgravity ; 8(1): 13, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508463

RESUMO

Biologically active vitamin B6-derivative pyridoxal 5'-phosphate (PLP) is an essential cofactor in amino acid metabolic pathways. PLP-dependent enzymes catalyze a multitude of chemical reactions but, how reaction diversity of PLP-dependent enzymes is achieved is still not well understood. Such comprehension requires atomic-level structural studies of PLP-dependent enzymes. Neutron diffraction affords the ability to directly observe hydrogen positions and therefore assign protonation states to the PLP cofactor and key active site residues. The low fluxes of neutron beamlines require large crystals (≥0.5 mm3). Tryptophan synthase (TS), a Fold Type II PLP-dependent enzyme, crystallizes in unit gravity with inclusions and high mosaicity, resulting in poor diffraction. Microgravity offers the opportunity to grow large, well-ordered crystals by reducing gravity-driven convection currents that impede crystal growth. We developed the Toledo Crystallization Box (TCB), a membrane-barrier capillary-dialysis device, to grow neutron diffraction-quality crystals of perdeuterated TS in microgravity. Here, we present the design of the TCB and its implementation on Center for Advancement of Science in Space (CASIS) supported International Space Station (ISS) Missions Protein Crystal Growth (PCG)-8 and PCG-15. The TCB demonstrated the ability to improve X-ray diffraction and mosaicity on PCG-8. In comparison to ground control crystals of the same size, microgravity-grown crystals from PCG-15 produced higher quality neutron diffraction data. Neutron diffraction data to a resolution of 2.1 Å has been collected using microgravity-grown perdeuterated TS crystals from PCG-15.

13.
J Mol Graph Model ; 117: 108315, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36108568

RESUMO

Antiretroviral drug resistance is a therapeutic obstacle for people with HIV. HIV protease inhibitors darunavir and lopinavir are recommended for resistant infections. We characterized a protease mutant (PR10x) derived from a highly resistant clinical isolate including 10 mutations associated with resistance to lopinavir and darunavir. Compared to the wild-type protease, PR10x exhibits ∼3-fold decrease in catalytic efficiency and Ki values of 2-3 orders of magnitude worse for darunavir, lopinavir, and potent investigational inhibitor GRL-519. Crystal structures of the mutant were solved in a ligand-free form and in complex with GRL-519. The structures show altered interactions in the active site, flap-core interface, hydrophobic core, hinge region, and 80s loop compared to the corresponding wild-type protease structures. The ligand-free crystal structure exhibits a highly curled flap conformation which may amplify drug resistance. Molecular dynamics simulations performed for 1 µs on ligand-free dimers showed extremely large fluctuations in the flaps for PR10x compared to equivalent simulations on PR with a single L76V mutation or wild-type protease. This analysis offers insight about the synergistic effects of mutations in highly resistant variants.


Assuntos
Inibidores da Protease de HIV , Cristalografia por Raios X , Darunavir/farmacologia , Farmacorresistência Viral/genética , Protease de HIV/química , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Humanos , Lopinavir/farmacologia , Simulação de Dinâmica Molecular , Mutação
14.
Biochemistry ; 50(44): 9421-3, 2011 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21988105

RESUMO

The neutron structure of wild-type human carbonic anhydrase II at pH 7.8 has been determined to 2.0 Å resolution. Detailed analysis and comparison to the previously determined structure at pH 10.0 show important differences in the protonation of key catalytic residues in the active site as well as a rearrangement of the H-bonded water network. For the first time, a completed H-bonded network stretching from the Zn-bound solvent to the proton shuttling residue, His64, has been directly observed.


Assuntos
Anidrase Carbônica II/química , Domínio Catalítico , Água/química , Anidrase Carbônica II/metabolismo , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Isoenzimas/química , Isoenzimas/metabolismo , Análise de Ativação de Nêutrons/métodos , Prótons , Soluções , Água/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-21301107

RESUMO

Room-temperature X-ray and neutron diffraction data were measured from a family 11 endoxylanase holoenzyme (XynII) originating from the filamentous fungus Trichoderma longibrachiatum to 1.55 Šresolution using a home source and to 1.80 Šresolution using the Protein Crystallography Station at LANSCE. Crystals of XynII, which is an important enzyme for biofuel production, were grown at pH 8.5 in order to examine the effect of basic conditions on the protonation-state distribution in the active site and throughout the protein molecule and to provide insights for rational engineering of catalytically improved XynII for industrial applications.


Assuntos
Endo-1,4-beta-Xilanases/química , Proteínas Fúngicas/química , Nêutrons , Trichoderma/enzimologia , Domínio Catalítico , Cristalografia/métodos , Concentração de Íons de Hidrogênio , Difração de Nêutrons , Raios X
16.
Biochemistry ; 49(3): 415-21, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20025241

RESUMO

Human carbonic anhydrase II (HCA II) catalyzes the reversible hydration of carbon dioxide to form bicarbonate and a proton. Despite many high-resolution X-ray crystal structures, mutagenesis, and kinetic data, the structural details of the active site, especially the proton transfer pathway, are unclear. A large HCA II crystal was prepared at pH 9.0 and subjected to vapor H-D exchange to replace labile hydrogens with deuteriums. Neutron diffraction studies were conducted at the Protein Crystallography Station at Los Alamos National Laboratory. The structure to 2.0 A resolution reveals several interesting active site features: (1) the Zn-bound solvent appearing to be predominantly a D(2)O molecule, (2) the orientation and hydrogen bonding pattern of solvent molecules in the active site cavity, (3) the side chain of His64 being unprotonated (neutral) and predominantly in an inward conformation pointing toward the zinc, and (4) the phenolic side chain of Tyr7 appearing to be unprotonated. The implications of these details are discussed, and a proposed mechanism for proton transfer is presented.


Assuntos
Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Nêutrons , Prótons , Sítios de Ligação , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Medição da Troca de Deutério , Histidina/genética , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Tirosina/genética , Difração de Raios X
17.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 11): 1249-56, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21041946

RESUMO

Improvements in neutron diffraction instrumentation are affording the opportunity to re-examine the structures of vertebrate hemoglobins and to interrogate proton and solvent position changes between the different quaternary states of the protein. For hemoglobins of unknown primary sequence, structural studies of cyanomethemoglobin (CNmetHb) are being used to help to resolve sequence ambiguity in the mass spectra. These studies have also provided additional structural evidence for the involvement of oxidized hemoglobin in the process of erythrocyte senescence. X-ray crystal studies of Tibetan snow leopard CNmetHb have shown that this protein crystallizes in the B state, a structure with a more open dyad, which possibly has relevance to RBC band 3 protein binding and erythrocyte senescence. R-state equine CNmetHb crystal studies elaborate the solvent differences in the switch and hinge region compared with a human deoxyhemoglobin T-state neutron structure. Lastly, comparison of histidine protonation between the T and R state should enumerate the Bohr-effect protons.


Assuntos
Cristalografia por Raios X , Eritrócitos/química , Hemoglobinas/química , Metemoglobina/análogos & derivados , Difração de Nêutrons , Nêutrons , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Cristalização , Felidae , Cavalos , Humanos , Metemoglobina/química , Modelos Moleculares , Oxirredução , Estrutura Quaternária de Proteína , Prótons
18.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 11): 1257-61, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21041947

RESUMO

A description is given of the results of neutron diffraction studies of the structures of four different metal-ion complexes of deuterated D-xylose isomerase. These represent four stages in the progression of the biochemical catalytic action of this enzyme. Analyses of the structural changes observed between the various three-dimensional structures lead to some insight into the mechanism of action of this enzyme.


Assuntos
Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/metabolismo , Metais/metabolismo , Difração de Nêutrons , Nêutrons , Xilulose/metabolismo , Catálise , Óxido de Deutério/metabolismo , Hidrogênio , Metais/química , Modelos Moleculares , Conformação Proteica , Prótons
19.
Biochemistry ; 47(29): 7595-7, 2008 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-18578508

RESUMO

The time-of-flight neutron Laue technique has been used to determine the location of hydrogen atoms in the enzyme d-xylose isomerase (XI). The neutron structure of crystalline XI with bound product, d-xylulose, shows, unexpectedly, that O5 of d-xylulose is not protonated but is hydrogen-bonded to doubly protonated His54. Also, Lys289, which is neutral in native XI, is protonated (positively charged), while the catalytic water in native XI has become activated to a hydroxyl anion which is in the proximity of C1 and C2, the molecular site of isomerization of xylose. These findings impact our understanding of the reaction mechanism.


Assuntos
Aldose-Cetose Isomerases/química , Hidrogênio/química , Nêutrons , Xilulose/química , Aldose-Cetose Isomerases/metabolismo , Catálise , Estrutura Molecular , Ligação Proteica , Xilulose/metabolismo
20.
Org Biomol Chem ; 6(20): 3703-13, 2008 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-18843400

RESUMO

Recently, we designed a series of novel HIV-1 protease inhibitors incorporating a stereochemically defined bicyclic fused cyclopentyl (Cp-THF) urethane as the high affinity P2-ligand. Inhibitor with this P2-ligand has shown very impressive potency against multi-drug-resistant clinical isolates. Based upon the -bound HIV-1 protease X-ray structure, we have now designed and synthesized a number of meso-bicyclic ligands which can conceivably interact similarly to the Cp-THF ligand. The design of meso-ligands is quite attractive as they do not contain any stereocenters. Inhibitors incorporating urethanes of bicyclic-1,3-dioxolane and bicyclic-1,4-dioxane have shown potent enzyme inhibitory and antiviral activities. Inhibitor (K(i) = 0.11 nM; IC(50) = 3.8 nM) displayed very potent antiviral activity in this series. While inhibitor showed comparable enzyme inhibitory activity (K(i) = 0.18 nM) its antiviral activity (IC(50) = 170 nM) was significantly weaker than inhibitor . Inhibitor maintained an antiviral potency against a series of multi-drug resistant clinical isolates comparable to amprenavir. A protein-ligand X-ray structure of -bound HIV-1 protease revealed a number of key hydrogen bonding interactions at the S2-subsite. We have created an active model of inhibitor based upon this X-ray structure.


Assuntos
Compostos Bicíclicos com Pontes/química , Desenho de Fármacos , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Protease de HIV/química , HIV-1/efeitos dos fármacos , Uretana/química , Domínio Catalítico , Cristalografia por Raios X , Farmacorresistência Viral Múltipla , Inibidores da Protease de HIV/síntese química , HIV-1/enzimologia , Humanos , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA