Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Annu Rev Cell Dev Biol ; 36: 35-60, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33021819

RESUMO

Many fundamental cellular processes such as division, polarization, endocytosis, and motility require the assembly, maintenance, and disassembly of filamentous actin (F-actin) networks at specific locations and times within the cell. The particular function of each network is governed by F-actin organization, size, and density as well as by its dynamics. The distinct characteristics of different F-actin networks are determined through the coordinated actions of specific sets of actin-binding proteins (ABPs). Furthermore, a cell typically assembles and uses multiple F-actin networks simultaneously within a common cytoplasm, so these networks must self-organize from a common pool of shared globular actin (G-actin) monomers and overlapping sets of ABPs. Recent advances in multicolor imaging and analysis of ABPs and their associated F-actin networks in cells, as well as the development of sophisticated in vitro reconstitutions of networks with ensembles of ABPs, have allowed the field to start uncovering the underlying principles by which cells self-organize diverse F-actin networks to execute basic cellular functions.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Humanos , Proteínas dos Microfilamentos/metabolismo , Modelos Biológicos , Schizosaccharomyces/metabolismo
2.
Nat Rev Mol Cell Biol ; 17(12): 799-810, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27625321

RESUMO

Cells precisely control the formation of dynamic actin cytoskeleton networks to coordinate fundamental processes, including motility, division, endocytosis and polarization. To support these functions, actin filament networks must be assembled, maintained and disassembled at the correct time and place, and with proper filament organization and dynamics. Regulation of the extent of filament network assembly and of filament network organization has been largely attributed to the coordinated activation of actin assembly factors through signalling cascades. Here, we discuss an intriguing model in which actin monomer availability is limiting and competition between homeostatic actin cytoskeletal networks for actin monomers is an additional crucial regulatory mechanism that influences the density and size of different actin networks, thereby contributing to the organization of the cellular actin cytoskeleton.


Assuntos
Citoesqueleto de Actina/fisiologia , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Animais , Ligação Competitiva , Homeostase , Humanos , Ligação Proteica , Mapas de Interação de Proteínas , Multimerização Proteica
3.
J Cell Sci ; 137(2)2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38277158

RESUMO

The actin cytoskeleton performs multiple cellular functions, and as such, actin polymerization must be tightly regulated. We previously demonstrated that reversible, non-degradative ubiquitylation regulates the function of the actin polymerase VASP in developing neurons. However, the underlying mechanism of how ubiquitylation impacts VASP activity was unknown. Here, we show that mimicking multi-monoubiquitylation of VASP at K240 and K286 negatively regulates VASP interactions with actin. Using in vitro biochemical assays, we demonstrate the reduced ability of multi-monoubiquitylated VASP to bind, bundle, and elongate actin filaments. However, multi-monoubiquitylated VASP maintained the ability to bind and protect barbed ends from capping protein. Finally, we demonstrate the electroporation of recombinant multi-monoubiquitylated VASP protein altered cell spreading morphology. Collectively, these results suggest a mechanism in which ubiquitylation controls VASP-mediated actin dynamics.


Assuntos
Actinas , Proteínas dos Microfilamentos , Fosfoproteínas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios/metabolismo , Fosfoproteínas/metabolismo
4.
Biophys J ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38894540

RESUMO

Actin filament networks are exposed to mechanical stimuli, but the effect of strain on actin filament structure has not been well established in molecular detail. This is a critical gap in understanding because the activity of a variety of actin-binding proteins has recently been determined to be altered by actin filament strain. We therefore used all-atom molecular dynamics simulations to apply tensile strains to actin filaments and find that changes in actin subunit organization are minimal in mechanically strained, but intact, actin filaments. However, a conformational change disrupts the critical D-loop to W-loop connection between longitudinal neighboring subunits, which leads to a metastable cracked conformation of the actin filament whereby one protofilament is broken prior to filament severing. We propose that the metastable crack presents a force-activated binding site for actin regulatory factors that specifically associate with strained actin filaments. Through protein-protein docking simulations, we find that 43 evolutionarily diverse members of the dual zinc-finger-containing LIM-domain family, which localize to mechanically strained actin filaments, recognize two binding sites exposed at the cracked interface. Furthermore, through its interactions with the crack, LIM domains increase the length of time damaged filaments remain stable. Our findings propose a new molecular model for mechanosensitive binding to actin filaments.

5.
J Cell Sci ; 135(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35673994

RESUMO

In formin-family proteins, actin filament nucleation and elongation activities reside in the formin homology 1 (FH1) and FH2 domains, with reaction rates that vary by at least 20-fold between formins. Each cell expresses distinct formins that assemble one or several actin structures, raising the question of what confers each formin its specificity. Here, using the formin Fus1 in Schizosaccharomyces pombe, we systematically probed the importance of formin nucleation and elongation rates in vivo. Fus1 assembles the actin fusion focus, necessary for gamete fusion to form the zygote during sexual reproduction. By constructing chimeric formins with combinations of FH1 and FH2 domains previously characterized in vitro, we establish that changes in formin nucleation and elongation rates have direct consequences on fusion focus architecture, and that Fus1 native high nucleation and low elongation rates are optimal for fusion focus assembly. We further describe a point mutant in Fus1 FH2 that preserves native nucleation and elongation rates in vitro but alters function in vivo, indicating an additional FH2 domain property. Thus, rates of actin assembly are tailored for assembly of specific actin structures.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Forminas , Proteínas dos Microfilamentos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
6.
Soft Matter ; 20(5): 971-977, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38190228

RESUMO

In vitro studies of actin filament networks crosslinked with dynamic actin binding proteins provide critical insights into cytoskeletal mechanics as well as inspiration for new adaptive materials design. However, discontinuous variance in the physiochemical properties of actin binding proteins impedes holistic relationships between crosslinker molecular parameters, network structure, and mechanics. Bio-synthetic constructs composed of synthetic polymer backbones and actin binding motifs would enable crosslinkers with engineered physiochemical properties to directly target the desired structure-property relationships. As a proof of concept, bio-synthetic crosslinkers composed of highly flexible polyethylene glycol (PEG) polymers functionalized with the actin binding peptide LifeAct, are explored as actin crosslinkers. Using bulk rheology and fluorescence microscopy, these constructs are shown to modulate actin filament network structure and mechanics in a contour length dependent manner, while maintaining the stress-stiffening behavior inherent to actin filament networks. These results encourage the design of more diverse and complex peptide-polymer crosslinkers to interrogate and control semi-flexible polymer networks.


Assuntos
Actinas , Polietilenoglicóis , Actinas/metabolismo , Polietilenoglicóis/metabolismo , Biomimética , Citoesqueleto de Actina/metabolismo , Proteínas dos Microfilamentos/química , Polímeros/metabolismo , Peptídeos/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(41): 25532-25542, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989126

RESUMO

The actin cytoskeleton assembles into diverse load-bearing networks, including stress fibers (SFs), muscle sarcomeres, and the cytokinetic ring to both generate and sense mechanical forces. The LIM (Lin11, Isl- 1, and Mec-3) domain family is functionally diverse, but most members can associate with the actin cytoskeleton with apparent force sensitivity. Zyxin rapidly localizes via its LIM domains to failing SFs in cells, known as strain sites, to initiate SF repair and maintain mechanical homeostasis. The mechanism by which these LIM domains associate with stress fiber strain sites (SFSS) is not known. Additionally, it is unknown how widespread strain sensing is within the LIM protein family. We identify that the LIM domain-containing region of 18 proteins from the Zyxin, Paxillin, Tes, and Enigma proteins accumulate to SFSS. Moreover, the LIM domain region from the fission yeast protein paxillin like 1 (Pxl1) also localizes to SFSS in mammalian cells, suggesting that the strain sensing mechanism is ancient and highly conserved. We then used sequence and domain analysis to demonstrate that tandem LIM domains contribute additively, for SFSS localization. Employing in vitro reconstitution, we show that the LIM domain-containing region from mammalian zyxin and fission yeast Pxl1 binds to mechanically stressed F-actin networks but does not associate with relaxed actin filaments. We propose that tandem LIM domains recognize an F-actin conformation that is rare in the relaxed state but is enriched in the presence of mechanical stress.


Assuntos
Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/fisiologia , Fibras de Estresse/metabolismo , Fibras de Estresse/fisiologia , Sequência de Aminoácidos , Animais , Fenômenos Biomecânicos/fisiologia , Linhagem Celular , Sequência Conservada , Evolução Molecular , Proteínas com Domínio LIM/química , Camundongos , Miosinas/química , Miosinas/metabolismo , Ligação Proteica/fisiologia , Fibras de Estresse/química , Estresse Mecânico , Leveduras
8.
Proc Natl Acad Sci U S A ; 116(26): 12629-12637, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189606

RESUMO

The shape of most animal cells is controlled by the actin cortex, a thin network of dynamic actin filaments (F-actin) situated just beneath the plasma membrane. The cortex is held far from equilibrium by both active stresses and polymer turnover: Molecular motors drive deformations required for cell morphogenesis, while actin-filament disassembly dynamics relax stress and facilitate cortical remodeling. While many aspects of actin-cortex mechanics are well characterized, a mechanistic understanding of how nonequilibrium actin turnover contributes to stress relaxation is still lacking. To address this, we developed a reconstituted in vitro system of entangled F-actin, wherein the steady-state length and turnover rate of F-actin are controlled by the actin regulatory proteins cofilin, profilin, and formin, which sever, recycle, and assemble filaments, respectively. Cofilin-mediated severing accelerates the turnover and spatial reorganization of F-actin, without significant changes to filament length. We demonstrate that cofilin-mediated severing is a single-timescale mode of stress relaxation that tunes the low-frequency viscosity over two orders of magnitude. These findings serve as the foundation for understanding the mechanics of more physiological F-actin networks with turnover and inform an updated microscopic model of single-filament turnover. They also demonstrate that polymer activity, in the form of ATP hydrolysis on F-actin coupled to nucleotide-dependent cofilin binding, is sufficient to generate a form of active matter wherein asymmetric filament disassembly preserves filament number despite sustained severing.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Fatores de Despolimerização de Actina/farmacologia , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Animais , Forminas/metabolismo , Forminas/farmacologia , Profilinas/metabolismo , Profilinas/farmacologia
9.
Proc Natl Acad Sci U S A ; 116(33): 16192-16197, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346091

RESUMO

In cells, actin-binding proteins (ABPs) sort to different regions to establish F-actin networks with diverse functions, including filopodia used for cell migration and contractile rings required for cell division. Recent experimental work uncovered a competition-based mechanism that may facilitate spatial localization of ABPs: binding of a short cross-linker protein to 2 actin filaments promotes the binding of other short cross-linkers and inhibits the binding of longer cross-linkers (and vice versa). We hypothesize this sorting arises because F-actin is semiflexible and cannot bend over short distances. We develop a mathematical theory and lattice models encompassing the most important physical parameters for this process and use coarse-grained simulations with explicit cross-linkers to characterize and test our predictions. Our theory and data predict an explicit dependence of cross-linker separation on bundle polymerization rate. We perform experiments that confirm this dependence, but with an unexpected cross-over in dominance of one cross-linker at high growth rates to the other at slow growth rates, and we investigate the origin of this cross-over with further simulations. The nonequilibrium mechanism that we describe can allow cells to organize molecular material to drive biological processes, and our results can guide the choice and design of cross-linkers for engineered protein-based materials.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Proteínas dos Microfilamentos/química , Modelos Teóricos , Citoesqueleto de Actina/genética , Actinina/química , Actinina/genética , Actinas/genética , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Divisão Celular/genética , Movimento Celular/genética , Cinética , Proteínas dos Microfilamentos/genética , Ligação Proteica/genética , Transporte Proteico/genética , Pseudópodes/química , Pseudópodes/genética
10.
Biophys J ; 120(20): 4399-4417, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34509503

RESUMO

We used computational methods to analyze the mechanism of actin filament nucleation. We assumed a pathway where monomers form dimers, trimers, and tetramers that then elongate to form filaments but also considered other pathways. We aimed to identify the rate constants for these reactions that best fit experimental measurements of polymerization time courses. The analysis showed that the formation of dimers and trimers is unfavorable because the association reactions are orders of magnitude slower than estimated in previous work rather than because of rapid dissociation of dimers and trimers. The 95% confidence intervals calculated for the four rate constants spanned no more than one order of magnitude. Slow nucleation reactions are consistent with published high-resolution structures of actin filaments and molecular dynamics simulations of filament ends. One explanation for slow dimer formation, which we support with computational analysis, is that actin monomers are in a conformational equilibrium with a dominant conformation that cannot participate in the nucleation steps.


Assuntos
Citoesqueleto de Actina , Actinas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Cinética , Polimerização
11.
Biophys J ; 120(15): 2984-2997, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34214524

RESUMO

Formins generate unbranched actin filaments by a conserved, processive actin assembly mechanism. Most organisms express multiple formin isoforms that mediate distinct cellular processes and facilitate actin filament polymerization by significantly different rates, but how these actin assembly differences correlate to cellular activity is unclear. We used a computational model of fission yeast cytokinetic ring assembly to test the hypothesis that particular actin assembly properties help tailor formins for specific cellular roles. Simulations run in different actin filament nucleation and elongation conditions revealed that variations in formin's nucleation efficiency critically impact both the probability and timing of contractile ring formation. To probe the physiological importance of nucleation efficiency, we engineered fission yeast formin chimera strains in which the FH1-FH2 actin assembly domains of full-length cytokinesis formin Cdc12 were replaced with the FH1-FH2 domains from functionally and evolutionarily diverse formins with significantly different actin assembly properties. Although Cdc12 chimeras generally support life in fission yeast, quantitative live-cell imaging revealed a range of cytokinesis defects from mild to severe. In agreement with the computational model, chimeras whose nucleation efficiencies are least similar to Cdc12 exhibit more severe cytokinesis defects, specifically in the rate of contractile ring assembly. Together, our computational and experimental results suggest that fission yeast cytokinesis is ideally mediated by a formin with properly tailored actin assembly parameters.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Citoesqueleto de Actina , Actinas/genética , Citocinese , Proteínas do Citoesqueleto , Forminas , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
12.
J Biol Chem ; 295(11): 3506-3517, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32019868

RESUMO

Pseudomonas aeruginosa uses a type III secretion system (T3SS) to inject cytotoxic effector proteins into host cells. The promiscuous nucleotidyl cyclase, exoenzyme Y (ExoY), is one of the most common effectors found in clinical P. aeruginosa isolates. Recent studies have revealed that the nucleotidyl cyclase activity of ExoY is stimulated by actin filaments (F-actin) and that ExoY alters actin cytoskeleton dynamics in vitro, via an unknown mechanism. The actin cytoskeleton plays an important role in numerous key biological processes and is targeted by many pathogens to gain competitive advantages. We utilized total internal reflection fluorescence microscopy, bulk actin assays, and EM to investigate how ExoY impacts actin dynamics. We found that ExoY can directly bundle actin filaments with high affinity, comparable with eukaryotic F-actin-bundling proteins, such as fimbrin. Of note, ExoY enzymatic activity was not required for F-actin bundling. Bundling is known to require multiple actin-binding sites, yet small-angle X-ray scattering experiments revealed that ExoY is a monomer in solution, and previous data suggested that ExoY possesses only one actin-binding site. We therefore hypothesized that ExoY oligomerizes in response to F-actin binding and have used the ExoY structure to construct a dimer-based structural model for the ExoY-F-actin complex. Subsequent mutational analyses suggested that the ExoY oligomerization interface plays a crucial role in mediating F-actin bundling. Our results indicate that ExoY represents a new class of actin-binding proteins that modulate the actin cytoskeleton both directly, via F-actin bundling, and indirectly, via actin-activated nucleotidyl cyclase activity.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Bactérias/metabolismo , Glucosiltransferases/metabolismo , Pseudomonas aeruginosa/enzimologia , Citoesqueleto de Actina/ultraestrutura , Fatores de Despolimerização de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Actinas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/ultraestrutura , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/ultraestrutura , Glicoproteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Mutação/genética , Ligação Proteica , Multimerização Proteica
13.
Genes Dev ; 27(19): 2164-77, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24115772

RESUMO

Many eukaryotes accomplish cell division by building and constricting a medial actomyosin-based cytokinetic ring (CR). In Schizosaccharomyces pombe, a Hippo-related signaling pathway termed the septation initiation network (SIN) controls CR formation, maintenance, and constriction. However, how the SIN regulates integral CR components was unknown. Here, we identify the essential cytokinetic formin Cdc12 as a key CR substrate of SIN kinase Sid2. Eliminating Sid2-mediated Cdc12 phosphorylation leads to persistent Cdc12 clustering, which prevents CR assembly in the absence of anillin-like Mid1 and causes CRs to collapse when cytokinesis is delayed. Molecularly, Sid2 phosphorylation of Cdc12 abrogates multimerization of a previously unrecognized Cdc12 domain that confers F-actin bundling activity. Taken together, our findings identify a SIN-triggered oligomeric switch that modulates cytokinetic formin function, revealing a novel mechanism of actin cytoskeleton regulation during cell division.


Assuntos
Citocinese/fisiologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/metabolismo , Citoesqueleto de Actina/metabolismo , Citocinese/genética , Proteínas do Citoesqueleto/genética , Fosforilação , Proteínas Quinases/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Deleção de Sequência
14.
Adv Funct Mater ; 29(49)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32523502

RESUMO

Incorporating growth into contemporary material functionality presents a grand challenge in materials design. The F-actin cytoskeleton is an active polymer network which serves as the mechanical scaffolding for eukaryotic cells, growing and remodeling in order to determine changes in cell shape. Nucleated from the membrane, filaments polymerize and grow into a dense network whose dynamics of assembly and disassembly, or 'turnover', coordinates both fluidity and rigidity. Here, we vary the extent of F-actin nucleation from a membrane surface in a biomimetic model of the cytoskeleton constructed from purified protein. We find that nucleation of F-actin mediates the accumulation and dissipation of polymerization-induced F-actin bending energy. At high and low nucleation, bending energies are low and easily relaxed yielding an isotropic material. However, at an intermediate critical nucleation, stresses are not relaxed by turnover and the internal energy accumulates 100-fold. In this case, high filament curvatures template further assembly of F-actin, driving the formation and stabilization of vortex-like topological defects. Thus, nucleation coordinates mechanical and chemical timescales to encode shape memory into active materials.

15.
Chem Rev ; 117(15): 9973-10042, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28753280

RESUMO

We review the progress achieved during the recent five years in immunochemical biosensors (immunosensors) combined with nanoparticles for enhanced sensitivity. The initial part introduces antibodies as classic recognition elements. The optical sensing part describes fluorescent, luminescent, and surface plasmon resonance systems. Amperometry, voltammetry, and impedance spectroscopy represent electrochemical transducer methods; electrochemiluminescence with photoelectric conversion constitutes a widely utilized combined method. The transducing options function together with suitable nanoparticles: metallic and metal oxides, including magnetic ones, carbon-based nanotubes, graphene variants, luminescent carbon dots, nanocrystals as quantum dots, and photon up-converting particles. These sources merged together provide extreme variability of existing nanoimmunosensing options. Finally, applications in clinical analysis (markers, tumor cells, and pharmaceuticals) and in the detection of pathogenic microorganisms, toxic agents, and pesticides in the environmental field and food products are summarized.


Assuntos
Técnicas Biossensoriais , Imunoensaio , Nanopartículas/química , Animais , Humanos
16.
Biophys J ; 114(7): 1636-1645, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29642033

RESUMO

Biomolecules exist and function in cellular microenvironments that control their spatial organization, local concentration, and biochemical reactivity. Due to the complexity of native cytoplasm, the development of artificial bioreactors and cellular mimics to compartmentalize, concentrate, and control the local physico-chemical properties is of great interest. Here, we employ self-assembling polypeptide coacervates to explore the partitioning of the ubiquitous cytoskeletal protein actin into liquid polymer-rich droplets. We find that actin spontaneously partitions into coacervate droplets and is enriched by up to ∼30-fold. Actin polymerizes into micrometer-long filaments and, in contrast to the globular protein BSA, these filaments localize predominately to the droplet periphery. We observe up to a 50-fold enhancement in the actin filament assembly rate inside coacervate droplets, consistent with the enrichment of actin within the coacervate phase. Together these results suggest that coacervates can serve as a versatile platform in which to localize and enrich biomolecules to study their reactivity in physiological environments.


Assuntos
Actinas/química , Actinas/metabolismo , Peptídeos/química , Citoesqueleto/metabolismo , Polilisina/metabolismo , Multimerização Proteica , Estrutura Quaternária de Proteína
17.
Proc Natl Acad Sci U S A ; 111(11): 4121-6, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591594

RESUMO

Filopodia are exploratory finger-like projections composed of multiple long, straight, parallel-bundled actin filaments that protrude from the leading edge of migrating cells. Drosophila melanogaster Enabled (Ena) is a member of the Ena/vasodilator-stimulated phosphoprotein protein family, which facilitates the assembly of filopodial actin filaments that are bundled by Fascin. However, the mechanism by which Ena and Fascin promote the assembly of uniformly thick F-actin bundles that are capable of producing coordinated protrusive forces without buckling is not well understood. We used multicolor evanescent wave fluorescence microscopy imaging to follow individual Ena molecules on both single and Fascin-bundled F-actin in vitro. Individual Ena tetramers increase the elongation rate approximately two- to threefold and inhibit capping protein by remaining processively associated with the barbed end for an average of ∼10 s in solution, for ∼60 s when immobilized on a surface, and for ∼110 s when multiple Ena tetramers are clustered on a surface. Ena also can gather and simultaneously elongate multiple barbed ends. Collectively, these properties could facilitate the recruitment of Fascin and initiate filopodia formation. Remarkably, we found that Ena's actin-assembly properties are tunable on Fascin-bundled filaments, facilitating the formation of filopodia-like F-actin networks without tapered barbed ends. Ena-associated trailing barbed ends in Fascin-bundled actin filaments have approximately twofold more frequent and approximately fivefold longer processive runs, allowing them to catch up with leading barbed ends efficiently. Therefore, Fascin and Ena cooperate to extend and maintain robust filopodia of uniform thickness with aligned barbed ends by a unique mechanistic cycle.


Assuntos
Actinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/metabolismo , Proteínas dos Microfilamentos/metabolismo , Pseudópodes/metabolismo , Animais , Drosophila melanogaster/citologia , Microscopia de Fluorescência , Fotodegradação , Ligação Proteica , Pseudópodes/ultraestrutura , Pontos Quânticos , Espectrometria de Fluorescência , Fatores de Tempo
18.
PLoS Pathog ; 10(6): e1004232, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24968323

RESUMO

A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin) network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis.


Assuntos
Citoesqueleto de Actina/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Pseudomonas syringae/patogenicidade , Fatores de Virulência/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/efeitos dos fármacos , Actinas/antagonistas & inibidores , Actinas/química , Actinas/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Endocitose/efeitos dos fármacos , Herbicidas/química , Herbicidas/metabolismo , Herbicidas/farmacologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Imunidade Vegetal/efeitos dos fármacos , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico/efeitos dos fármacos , Pseudomonas syringae/imunologia , Pseudomonas syringae/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Plântula/microbiologia , Solubilidade , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia , Virulência/efeitos dos fármacos , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/farmacologia
19.
Proc Natl Acad Sci U S A ; 110(29): E2677-86, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818602

RESUMO

Sca2 (surface cell antigen 2) is the only bacterial protein known to promote both actin filament nucleation and profilin-dependent elongation, mimicking eukaryotic formins to assemble actin comet tails for Rickettsia motility. We show that Sca2's functional mimicry of formins is achieved through a unique mechanism. Unlike formins, Sca2 is monomeric, but has N- and C-terminal repeat domains (NRD and CRD) that interact with each other for processive barbed-end elongation. The crystal structure of NRD reveals a previously undescribed fold, consisting of helix-loop-helix repeats arranged into an overall crescent shape. CRD is predicted to share this fold and might form together with NRD, a doughnut-shaped formin-like structure. In between NRD and CRD, proline-rich sequences mediate the incorporation of profilin-actin for elongation, and WASP-homology 2 (WH2) domains recruit actin monomers for nucleation. Sca2's α-helical fold is unusual among Gram-negative autotransporters, which overwhelmingly fold as ß-solenoids. Rickettsia has therefore "rediscovered" formin-like actin nucleation and elongation.


Assuntos
Actinas/metabolismo , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Evolução Molecular , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Conformação Proteica , Rickettsia/genética , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Calorimetria , Dicroísmo Circular , Cristalização , Proteínas Fetais/metabolismo , Forminas , Proteínas dos Microfilamentos/química , Microscopia de Fluorescência , Proteínas Nucleares/metabolismo , Profilinas/metabolismo , Estrutura Terciária de Proteína , Sequências Repetidas Terminais/genética
20.
J Biol Chem ; 289(7): 4043-54, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24371134

RESUMO

Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction. Low densities of ADF/cofilins, in contrast, result in the optimal severing of the filament. To date, how these two contrasting modalities are achieved by the same protein remains uncertain. Here, we define the proximate amino acids between the actin filament and the malaria parasite ADF/cofilin, PfADF1 from Plasmodium falciparum. PfADF1 is unique among ADF/cofilins in being able to sever F-actin but do so without stable filament binding. Using chemical cross-linking and mass spectrometry (XL-MS) combined with structure reconstruction we describe a previously overlooked binding interface on the actin filament targeted by PfADF1. This site is distinct from the known binding site that defines decoration. Furthermore, total internal reflection fluorescence (TIRF) microscopy imaging of single actin filaments confirms that this novel low affinity site is required for F-actin severing. Exploring beyond malaria parasites, selective blocking of the decoration site with human cofilin (HsCOF1) using cytochalasin D increases its severing rate. HsCOF1 may therefore also use a decoration-independent site for filament severing. Thus our data suggest that a second, low affinity actin-binding site may be universally used by ADF/cofilins for actin filament severing.


Assuntos
Destrina/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/química , Actinas/genética , Actinas/metabolismo , Sítios de Ligação , Cofilina 1/química , Cofilina 1/genética , Cofilina 1/metabolismo , Citocalasina D/química , Destrina/genética , Destrina/metabolismo , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA