RESUMO
Glioblastoma is the most frequent malignant primary brain tumor. In a hierarchical tumor model, glioblastoma stem-like cells (GSC) play a major role in tumor initiation and maintenance as well as in therapy resistance and recurrence. Thus, targeting this cellular subset may be key to effective immunotherapy. Here, we present a mass spectrometry-based analysis of HLA-presented peptidomes of GSC and glioblastoma patient specimens. Based on the analysis of patient samples (n = 9) and GSC (n = 3), we performed comparative HLA peptidome profiling against a dataset of normal human tissues. Using this immunopeptidome-centric approach we could clearly delineate a subset of naturally presented, GSC-associated HLA ligands, which might serve as highly specific targets for T cell-based immunotherapy. In total, we identified 17 antigens represented by 41 different HLA ligands showing natural and exclusive presentation both on GSC and patient samples. Importantly, in vitro immunogenicity and antigen-specific target cell killing assays suggest these peptides to be epitopes of functional CD8+ T cell responses, thus rendering them prime candidates for antigen-specific immunotherapy of glioblastoma.
Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Antígenos HLA/metabolismo , Células-Tronco Neoplásicas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Criança , Estudos de Coortes , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Imunoterapia/métodos , Isocitrato Desidrogenase/genética , Ligantes , Masculino , Pessoa de Meia-IdadeRESUMO
Direct analysis of HLA-presented antigens by mass spectrometry provides a comprehensive view on the antigenic landscape of different tissues/malignancies and enables the identification of novel, pathophysiologically relevant T-cell epitopes. Here, we present a systematic and comparative study of the HLA class I and II presented, nonmutant antigenome of multiple myeloma (MM). Quantification of HLA surface expression revealed elevated HLA molecule counts on malignant plasma cells compared with normal B cells, excluding relevant HLA downregulation in MM. Analyzing the presentation of established myeloma-associated T-cell antigens on the HLA ligandome level, we found a substantial proportion of antigens to be only infrequently presented on primary myelomas or to display suboptimal degrees of myeloma specificity. However, unsupervised analysis of our extensive HLA ligand data set delineated a panel of 58 highly specific myeloma-associated antigens (including multiple myeloma SET domain containing protein) which are characterized by frequent and exclusive presentation on myeloma samples. Functional characterization of these target antigens revealed peptide-specific, preexisting CD8(+) T-cell responses exclusively in myeloma patients, which is indicative of pathophysiological relevance. Furthermore, in vitro priming experiments revealed that peptide-specific T-cell responses can be induced in response-naive myeloma patients. Together, our results serve to guide antigen selection for T-cell-based immunotherapy of MM.
Assuntos
Epitopos de Linfócito T/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Ativação Linfocitária/imunologia , Mieloma Múltiplo/imunologia , Adulto , Idoso , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Imunoterapia , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas em TandemRESUMO
To assure efficient MHC class I (MHC-I) peptide loading, the peptide loading complex (PLC) recruits the peptide-receptive form of MHC-I, and in this process, tapasin (tpn) connects MHC-I with the peptide transporter TAP and forms a stable disulfide bond with ERp57. Here, we describe an alternatively spliced tpn transcript lacking exon 3, observed in cells infected with human cytomegalovirus. Recognition of exon 3 was regulated via G-runs, suggesting that members of the hnRNP (heterogeneous nuclear ribonucleoprotein)-family regulate expression of the ΔExon3 variant of tpn. Exon 3 includes Cys-95, which is responsible for the disulfide bond formation with ERp57 and, consequently, interaction of the ΔExon3 variant with ERp57 was strongly impaired. Although the ΔExon3 variant specifically stabilized TAP expression but not MHC-I in tpn-deficient cells, in tpn-proficient cells, the ΔExon3 tpn reduced cell surface expression of the tpn-dependent HLA-B*44:02 allele; the stability of the tpn-independent HLA-B*44:05 was not affected. Most importantly, detailed analysis of the PLC revealed a simultaneous binding of the ΔExon3 variant and tpn to TAP, suggesting modification of PLC functions. Indeed, an altered MHC-I ligandome was observed in HeLa cells overexpressing the ΔExon3 variant, highlighting the potential of the alternatively spliced tpn variant to impact CD8(+) T-cell responses.
Assuntos
Antígeno HLA-B44/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Fragmentos de Peptídeos/metabolismo , Processamento Alternativo , Apresentação de Antígeno/genética , Éxons/genética , Antígeno HLA-B44/genética , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/imunologia , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/isolamento & purificação , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Deleção de Sequência/genética , Transgenes/genéticaRESUMO
BACKGROUND: The human leucocyte antigen (HLA) complex controls adaptive immunity by presenting defined fractions of the intracellular and extracellular protein content to immune cells. Understanding the benign HLA ligand repertoire is a prerequisite to define safe T-cell-based immunotherapies against cancer. Due to the poor availability of benign tissues, if available, normal tissue adjacent to the tumor has been used as a benign surrogate when defining tumor-associated antigens. However, this comparison has proven to be insufficient and even resulted in lethal outcomes. In order to match the tumor immunopeptidome with an equivalent counterpart, we created the HLA Ligand Atlas, the first extensive collection of paired HLA-I and HLA-II immunopeptidomes from 227 benign human tissue samples. This dataset facilitates a balanced comparison between tumor and benign tissues on HLA ligand level. METHODS: Human tissue samples were obtained from 16 subjects at autopsy, five thymus samples and two ovary samples originating from living donors. HLA ligands were isolated via immunoaffinity purification and analyzed in over 1200 liquid chromatography mass spectrometry runs. Experimentally and computationally reproducible protocols were employed for data acquisition and processing. RESULTS: The initial release covers 51 HLA-I and 86 HLA-II allotypes presenting 90,428 HLA-I- and 142,625 HLA-II ligands. The HLA allotypes are representative for the world population. We observe that immunopeptidomes differ considerably between tissues and individuals on source protein and HLA-ligand level. Moreover, we discover 1407 HLA-I ligands from non-canonical genomic regions. Such peptides were previously described in tumors, peripheral blood mononuclear cells (PBMCs), healthy lung tissues and cell lines. In a case study in glioblastoma, we show that potential on-target off-tumor adverse events in immunotherapy can be avoided by comparing tumor immunopeptidomes to the provided multi-tissue reference. CONCLUSION: Given that T-cell-based immunotherapies, such as CAR-T cells, affinity-enhanced T cell transfer, cancer vaccines and immune checkpoint inhibition, have significant side effects, the HLA Ligand Atlas is the first step toward defining tumor-associated targets with an improved safety profile. The resource provides insights into basic and applied immune-associated questions in the context of cancer immunotherapy, infection, transplantation, allergy and autoimmunity. It is publicly available and can be browsed in an easy-to-use web interface at https://hla-ligand-atlas.org .
Assuntos
Antígenos de Neoplasias/imunologia , Antígenos HLA/imunologia , Imunoterapia Adotiva , Neoplasias/terapia , Peptídeos/imunologia , Proteoma , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/transplante , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida , Bases de Dados de Proteínas , Feminino , Humanos , Lactente , Recém-Nascido , Ligantes , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/imunologia , Proteômica , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Espectrometria de Massas em TandemRESUMO
The course of chronic lymphocytic leukemia (CLL), inducing an immunosuppressed state that also affects T cells as central components of adaptive immunity, predisposes patients to develop second malignancies with skin cancer being the most common. Recently, we found that prevalence of memory T cells with specificity for CLL-associated antigens defined by mass spectrometry-based immunopeptidome analysis correlated with a significant survival benefit. Here, we analyzed our CLL patient cohort for second skin (pre)malignancies and found a significantly lower incidence of skin cancer in the patients showing immune responses to CLL-associated antigens. Surprisingly, CLL-associated antigen-specific immune responses did not associate with clinical characteristics including leukocyte, neutrophil, and thrombocyte count, hemoglobin, immunoglobulin levels, or CD8+ and CD4+ T-cell immune status. Our data indicate that the CLL-specific immune signature of a given patient, defined by antigen-specific T-cell responses, might represent an independent marker to identify CLL patients susceptible for the development of skin malignancies.
Assuntos
Antígenos/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Segunda Neoplasia Primária/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T/imunologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Lesões Pré-Cancerosas/imunologia , Fatores de RiscoRESUMO
Hematological malignancies (HM) are highly amenable targets for immunotherapeutic intervention and may be effectively treated by antigen-specific T-cell based treatment. Recent studies demonstrate that physiologically occurring anti-cancer T-cell responses in certain HM entities target broadly presented non-mutated epitopes. HLA ligands are thus implied as prime targets for broadly applicable and antigen-specific off-the-shelf compounds. With the aim of assessing the presence of common targets shared among different HM which may enable addressing a larger patient collective we conducted a meta-analysis of 83 mass spectrometry-based HLA peptidome datasets (comprising 40,361 unique peptide identifications) across four major HM (19 AML, 16 CML, 35 CLL, and 13 MM/MCL samples) and investigated similarities and differences within the HLA presented antigenic landscape. We found the cancer HLA peptidome datasets to cluster specifically along entity and lineage lines, suggesting that the immunopeptidome directly reflects the differences in the underlying (tumor-)biology. In line with these findings, we only detected a small set of entity-spanning antigens, which were predominantly characterized by low presentation frequencies within the different patient cohorts. These findings suggest that design of T-cell immunotherapies for the treatment of HM should ideally be conducted in an entity-specific fashion.
Assuntos
Mapeamento de Epitopos , Epitopos/imunologia , Antígenos HLA/imunologia , Peptídeos/imunologia , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Análise por Conglomerados , Mapeamento de Epitopos/métodos , Epitopos/química , Epitopos/metabolismo , Antígenos HLA/química , Antígenos HLA/metabolismo , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/terapia , Humanos , Imunoterapia , Leucemia/imunologia , Leucemia/metabolismo , Leucemia/terapia , Ligantes , Peptídeos/química , Peptídeos/metabolismoRESUMO
Genome sequencing has uncovered an array of recurring somatic mutations in different non-Hodgkin lymphoma (NHL) subtypes. If affecting protein-coding regions, such mutations may yield mutation-derived peptides that may be presented by HLA class I proteins and recognized by cytotoxic T cells. A recurring somatic and oncogenic driver mutation of the Toll-like receptor adaptor protein MYD88, Leu265Pro (L265P) was identified in up to 90% of different NHL subtype patients. We therefore screened the potential of MYD88L265P-derived peptides to elicit cytotoxic T cell responses as tumor-specific neoantigens. Based on in silico predictions, we identified potential MYD88L265P-containing HLA ligands for several HLA class I restrictions. A set of HLA class I MYD88L265P-derived ligands elicited specific cytotoxic T cell responses for HLA-B*07 and -B*15. These data highlight the potential of MYD88L265P mutation-specific peptide-based immunotherapy as a novel personalized treatment approach for patients with MYD88L265P+ NHLs that may complement pharmacological approaches targeting oncogenic MyD88 L265P signaling.