Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(7): 6216-6227, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305339

RESUMO

Solid-state composite electrolytes have arisen as one of the most promising materials classes for next-generation Li-ion battery technology. These composites mix ceramic and solid-polymer ion conductors with the aim of combining the advantages of each material. The ion-transport mechanisms within such materials, however, remain elusive. This knowledge gap can to a large part be attributed to difficulties in studying processes at the ceramic-polymer interface, which are expected to play a major role in the overall ion transport through the electrolyte. Computational efforts have the potential of providing significant insight into these processes. One of the main challenges to overcome is then to understand how a sufficiently robust model can be constructed in order to provide reliable results. To this end, a series of molecular dynamics simulations are here carried out with a variation of certain structural (surface termination and polymer length) and pair potential (van der Waals parameters and partial charges) models of the Li7La3Zr2O12 (LLZO) poly(ethylene oxide) (PEO) system, in order to test how sensitive the outcome is to each variation. The study shows that the static and dynamic properties of Li-ion are significantly affected by van der Waals parameters as well as the surface terminations, while the thickness of the interfacial region - where the structure-dynamic properties are different as compared to the bulk-like regime - is the same irrespective of the simulation setup.

2.
J Chem Theory Comput ; 20(1): 18-29, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38113514

RESUMO

We present an efficient method to compute diffusion coefficients of multiparticle systems with strong interactions directly from the geometry and topology of the potential energy field of the migrating particles. The approach is tested on Li-ion diffusion in crystalline inorganic solids, predicting Li-ion diffusion coefficients within 1 order of magnitude of molecular dynamics simulations at the same level of theory while being several orders of magnitude faster. The speed and transferability of our workflow make it well-suited for extensive and efficient screening studies of crystalline solid-state ion conductor candidates and promise to serve as a platform for diffusion prediction even up to the density functional level of theory.

3.
Nanoscale ; 14(46): 17237-17246, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36377706

RESUMO

In this study, 3-(2,2,2-trifluoroethoxy)-propionitrile (FEON), a fluorinated nitrile compound with high oxidative stability, low volatility and non-flammability, is introduced as an electrolyte solvent for high-energy density Li|NCM batteries. After optimization of the electrolyte as (0.8 M LiTFSI + 0.2 M LiODFB)/FEC : FEON (1 : 3, by vol., abbreviated as FF13), the FEON-based electrolyte exhibits better cycling performance for both the lithium metal anode and 4.4 V high-voltage NCM cathode, compared with those of a commercial carbonate electrolyte of 1 M LiPF6/EC : EMC : DMC (1 : 1 : 1, by vol.). As for the FF13 electrolyte, the maximum coordination number of 3 for FEON molecules in the solvation structure is disclosed through molecular dynamics simulation combined with Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy measurements. Furthermore, the solid electrolyte interphase on the lithium metal anode is enriched with organic components and LiF, which is proposed from FEON decomposition based on density functional theory calculations and X-ray photoelectron spectroscopy analysis. All the above results demonstrate that fluorinated nitrile electrolytes constitute a promising platform for high energy density Li|NCM batteries.

4.
Nat Commun ; 13(1): 1920, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395820

RESUMO

Molecularly thin, nanoporous thin films are of paramount importance in material sciences. Their use in a wide range of applications requires control over their chemical functionalities, which is difficult to achieve using current production methods. Here, the small polycyclic aromatic hydrocarbon decacyclene is used to form molecular thin films, without requiring covalent crosslinking of any kind. The 2.5 nm thin films are mechanically stable, able to be free-standing over micrometer distances, held together solely by supramolecular interactions. Using a combination of computational chemistry and microscopic imaging techniques, thin films are studied on both a molecular and microscopic scale. Their mechanical strength is quantified using AFM nanoindentation, showing their capability of withstanding a point load of 26 ± 9 nN, when freely spanning over a 1 µm aperture, with a corresponding Young's modulus of 6 ± 4 GPa. Our thin films constitute free-standing, non-covalent thin films based on a small PAH.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA