Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(13): 2472-2489.e8, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996458

RESUMO

Pseudouridine (Ψ), the isomer of uridine, is ubiquitously found in RNA, including tRNA, rRNA, and mRNA. Human pseudouridine synthase 3 (PUS3) catalyzes pseudouridylation of position 38/39 in tRNAs. However, the molecular mechanisms by which it recognizes its RNA targets and achieves site specificity remain elusive. Here, we determine single-particle cryo-EM structures of PUS3 in its apo form and bound to three tRNAs, showing how the symmetric PUS3 homodimer recognizes tRNAs and positions the target uridine next to its active site. Structure-guided and patient-derived mutations validate our structural findings in complementary biochemical assays. Furthermore, we deleted PUS1 and PUS3 in HEK293 cells and mapped transcriptome-wide Ψ sites by Pseudo-seq. Although PUS1-dependent sites were detectable in tRNA and mRNA, we found no evidence that human PUS3 modifies mRNAs. Our work provides the molecular basis for PUS3-mediated tRNA modification in humans and explains how its tRNA modification activity is linked to intellectual disabilities.


Assuntos
Microscopia Crioeletrônica , Hidroliases , Transferases Intramoleculares , Pseudouridina , RNA de Transferência , Humanos , Domínio Catalítico , Células HEK293 , Hidroliases/metabolismo , Hidroliases/genética , Hidroliases/química , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Deficiência Intelectual/enzimologia , Modelos Moleculares , Mutação , Ligação Proteica , Pseudouridina/metabolismo , Pseudouridina/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , RNA de Transferência/genética , Especificidade por Substrato
2.
J Biol Chem ; 299(8): 104966, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37380076

RESUMO

tRNAs are short noncoding RNAs responsible for decoding mRNA codon triplets, delivering correct amino acids to the ribosome, and mediating polypeptide chain formation. Due to their key roles during translation, tRNAs have a highly conserved shape and large sets of tRNAs are present in all living organisms. Regardless of sequence variability, all tRNAs fold into a relatively rigid three-dimensional L-shaped structure. The conserved tertiary organization of canonical tRNA arises through the formation of two orthogonal helices, consisting of the acceptor and anticodon domains. Both elements fold independently to stabilize the overall structure of tRNAs through intramolecular interactions between the D- and T-arm. During tRNA maturation, different modifying enzymes posttranscriptionally attach chemical groups to specific nucleotides, which not only affect translation elongation rates but also restrict local folding processes and confer local flexibility when required. The characteristic structural features of tRNAs are also employed by various maturation factors and modification enzymes to assure the selection, recognition, and positioning of specific sites within the substrate tRNAs. The cellular functional repertoire of tRNAs continues to extend well beyond their role in translation, partly, due to the expanding pool of tRNA-derived fragments. Here, we aim to summarize the most recent developments in the field to understand how three-dimensional structure affects the canonical and noncanonical functions of tRNA.


Assuntos
Anticódon , RNA de Transferência , Conformação de Ácido Nucleico , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticódon/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo
3.
Structure ; 32(3): 260-262, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458158

RESUMO

In this issue of Structure, Sievers et al.1 gain important insights into the human tRNA guanine transglycosylase QTRT1/2. The study presents a cryo-EM reconstruction of the inhibited human heterodimer in complex with human tRNAAsp, which represents the first snapshot of a eukaryotic TGT in complex with its full-length tRNA substrate.


Assuntos
RNA de Transferência , Humanos
4.
Sci Adv ; 9(2): eadd9688, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638176

RESUMO

Plants use solar energy to power cellular metabolism. The oxidation of plastoquinol and reduction of plastocyanin by cytochrome b6f (Cyt b6f) is known as one of the key steps of photosynthesis, but the catalytic mechanism in the plastoquinone oxidation site (Qp) remains elusive. Here, we describe two high-resolution cryo-EM structures of the spinach Cyt b6f homodimer with endogenous plastoquinones and in complex with plastocyanin. Three plastoquinones are visible and line up one after another head to tail near Qp in both monomers, indicating the existence of a channel in each monomer. Therefore, quinones appear to flow through Cyt b6f in one direction, transiently exposing the redox-active ring of quinone during catalysis. Our work proposes an unprecedented one-way traffic model that explains efficient quinol oxidation during photosynthesis and respiration.


Assuntos
Citocromos b , Plastocianina , Citocromos b/metabolismo , Plastocianina/metabolismo , Microscopia Crioeletrônica , Complexo Citocromos b6f/química , Complexo Citocromos b6f/metabolismo , Oxirredução , Fotossíntese , Plantas/metabolismo , Quinonas , Transporte de Elétrons
5.
J Mater Chem B ; 11(28): 6540-6546, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37427706

RESUMO

Charge-driven inclusion complex formation in live cells was examined using a degradation-prone fluorescent protein and a series of protein cages. The results show that sufficiently strong host-guest ionic interaction and an intact shell-like structure are crucial for the protective guest encapsulation.

6.
Nat Commun ; 14(1): 4784, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553384

RESUMO

N6-methyladenosine (m6A) is an abundant, dynamic mRNA modification that regulates key steps of cellular mRNA metabolism. m6A in the mRNA coding regions inhibits translation elongation. Here, we show how m6A modulates decoding in the bacterial translation system using a combination of rapid kinetics, smFRET and single-particle cryo-EM. We show that, while the modification does not impair the initial binding of aminoacyl-tRNA to the ribosome, in the presence of m6A fewer ribosomes complete the decoding process due to the lower stability of the complexes and enhanced tRNA drop-off. The mRNA codon adopts a π-stacked codon conformation that is remodeled upon aminoacyl-tRNA binding. m6A does not exclude canonical codon-anticodon geometry, but favors alternative more dynamic conformations that are rejected by the ribosome. These results highlight how modifications outside the Watson-Crick edge can still interfere with codon-anticodon base pairing and complex recognition by the ribosome, thereby modulating the translational efficiency of modified mRNAs.


Assuntos
Anticódon , Biossíntese de Proteínas , Códon/genética , Modelos Moleculares , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA