Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 81(16): 5552-9, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26048934

RESUMO

It was previously demonstrated that there are no indigenous strains of Bradyrhizobium japonicum forming nitrogen-fixing root nodule symbioses with soybean plants in arable field soils in Poland. However, bacteria currently classified within this species are present (together with Bradyrhizobium canariense) as indigenous populations of strains specific for nodulation of legumes in the Genisteae tribe. These rhizobia, infecting legumes such as lupins, are well established in Polish soils. The studies described here were based on soybean nodulation field experiments, established at the Poznan University of Life Sciences Experiment Station in Gorzyn, Poland, and initiated in the spring of 1994. Long-term research was then conducted in order to study the relation between B. japonicum USDA 110 and USDA 123, introduced together into the same location, where no soybean rhizobia were earlier detected, and nodulation and competitive success were followed over time. Here we report the extra-long-term saprophytic survival of B. japonicum strains nodulating soybeans that were introduced as inoculants 20 years earlier and where soybeans were not grown for the next 17 years. The strains remained viable and symbiotically competent, and molecular and immunochemical methods showed that the strains were undistinguishable from the original inoculum strains USDA 110 and USDA 123. We also show that the strains had balanced numbers and their mobility in soil was low. To our knowledge, this is the first report showing the extra-long-term persistence of soybean-nodulating strains introduced into Polish soils and the first analyzing the long-term competitive relations of USDA 110 and USDA 123 after the two strains, neither of which was native, were introduced into the environment almost 2 decades ago.


Assuntos
Bradyrhizobium/isolamento & purificação , Glycine max/microbiologia , Microbiologia do Solo , Polônia
2.
Plant Sci ; 264: 149-167, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28969795

RESUMO

Isoflavone synthase (IFS) is the key enzyme of isoflavonoid biosynthesis. IFS genes were identified in numerous species, although their evolutionary patterns have not yet been reconstructed. To address this issue, we performed structural and functional genomic analysis. Narrow leafed lupin, Lupinus angustifolius L., was used as a reference species for the genus, because it has the most developed molecular tools available. Nuclear genome BAC library clones carrying IFS homologs were localized by linkage mapping and fluorescence in situ hybridization in three chromosome pairs. Annotation of BAC, scaffold and transcriptome sequences confirmed the presence of three full-length IFS genes in the genome. Microsynteny analysis and Bayesian inference provided clear evidence that IFS genes in legumes have evolved by lineage-specific whole-genome and tandem duplications. Gene expression profiling and RNA-seq data mining showed that the vast majority of legume IFS copies have maintained their transcriptional activity. L. angustifolius IFS homologs exhibited organ-specific expression patterns similar to those observed in other Papilionoideae. Duplicated lupin IFS homologs retained non-negligible levels of substitutions in conserved motifs, putatively due to positive selection acting during early evolution of the genus, before the whole-genome duplication. Strong purifying selection preserved newly arisen IFS duplicates from further nonsynonymous changes.


Assuntos
Lupinus/enzimologia , Família Multigênica , Oxigenases/genética , Teorema de Bayes , Mapeamento Cromossômico , Evolução Molecular , Duplicação Gênica , Perfilação da Expressão Gênica , Genômica , Hibridização in Situ Fluorescente , Lupinus/genética , Proteínas de Plantas/genética , Alinhamento de Sequência , Sintenia , Transcriptoma
3.
Syst Appl Microbiol ; 34(5): 368-75, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21514760

RESUMO

Forty three Bradyrhizobium strains isolated in Poland from root nodules of lupin species (Lupinus albus, L. angustifolius and L. luteus), and pink serradella (Ornithopus sativus) were examined based on phylogenetic analyses of three housekeeping (atpD, glnII and recA) and nodulation (nodA) gene sequences. Additionally, seven strains originating from root-nodules of yellow serradella (O. compressus) from Asinara Island (Italy) were included in this study. Phylogenetic trees revealed that 15 serradella strains, including all yellow serradella isolates, and six lupin strains grouped in Bradyrhizobium canariense (BC) clade, whereas eight strains from pink serradella and 15 lupin strains were assigned to Bradyrhizobium japonicum (BJ1). Apparently, these species are the two dominant groups in soils of central Europe, in the nodules of lupin and serradella plants. Only three strains belonged to other chromosomal lineages: one formed a cluster that was sister to B. canariense, one strain grouped outside the branch formed by B. japonicum super-group, and one strain occupied a distant position in the genus Bradyrhizobium, clustering with strains of the Rhodopseudomonas genus. All strains in nodulation nodA gene tree grouped in a cluster referred to as Clade II, which is in line with earlier data on this clade dominance among Bradyrhizobium strains in Europe. The nodA tree revealed four well-supported subgroups within Clade II (II.1-II.4). Interestingly, all B. canariense strains clustered in subgroup II.1 whereas B. japonicum strains dominated subgroups II.2-II.4.


Assuntos
Aciltransferases/genética , Proteínas de Bactérias/genética , Bradyrhizobium/classificação , Fabaceae/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Bradyrhizobium/genética , Bradyrhizobium/crescimento & desenvolvimento , DNA Bacteriano/genética , Europa (Continente) , Genes Bacterianos , Filogenia , Recombinases Rec A/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA