RESUMO
BACKGROUND: Telomeres are the nucleoprotein complexes that physically cap the ends of eukaryotic chromosomes. Most plants possess Arabidopsis-type telomere sequences (TSs). In addition to terminal TSs, more diverse interstitial TSs exists in plants. Although telomeres have been sufficiently studied, the actual diversity of TSs in land plants is underestimated. RESULTS: We investigate genotypes from seven natural populations with contrasting environments of four Chenopodium species to reveal the variability in TSs by analyzing Oxford Nanopore reads. Fluorescent in situ hybridization was used to localize telomeric repeats on chromosomes. We identified a number of derivative monomers that arise in part of both terminal and interstitial telomeric arrays of a single genotype. The former presents a case of block-organized double-monomer telomers, where blocks of Arabidopsis-type TTTAGGG motifs were interspersed with blocks of derivative TTTAAAA motifs. The latter is an integral part of the satellitome with transformations specific to the inactive genome fraction. CONCLUSIONS: We suggested two alternative models for the possible formation of derivative monomers from telomeric heptamer motifs of Arabidopsis-type. It was assumed that derivatization of TSs is a ubiquitous process in the plant genome but occurrence and frequencies of derivatives may be genotype-specific. We also propose that the formation of non-canonical arrays of TSs, especially at chromosomal termini, may be a source for genomic variability in nature.
Assuntos
Arabidopsis , Humanos , Arabidopsis/genética , Hibridização in Situ Fluorescente , Telômero/genética , Genótipo , EucariotosRESUMO
Intra-specific variability is a cornerstone of evolutionary success of species. Acquiring genetic material from distant sources is an important adaptive mechanism in bacteria, but it can also play a role in eukaryotes. In this paper, we investigate the nature and evolution of a chromosomal segment of panicoid (Poaceae, Panicoideae) origin occurring in the nuclear genomes of species of the barley genus Hordeum (Pooideae). The segment, spanning over 440 kb in the Asian Hordeum bogdanii and 219 kb in the South American Hordeum pubiflorum, resides on a pair of nucleolar organizer region (NOR)-bearing chromosomes. Conserved synteny and micro-collinearity of the segment in both species indicate a common origin of the segment, which was acquired before the split of the respective barley lineages 5-1.7 million years ago. A major part of the foreign DNA consists of several approximately 68 kb long repeated blocks containing five stress-related protein-coding genes and transposable elements (TEs). Whereas outside these repeats, the locus was invaded by multiple TEs from the host genome, the repeated blocks are rather intact and appear to be preserved. The protein-coding genes remained partly functional, as indicated by conserved reading frames, a low amount of non-synonymous mutations, and expression of mRNA. A screen across Hordeum species targeting the panicoid protein-coding genes revealed the presence of the genes in all species of the section Stenostachys. In summary, our study shows that grass genomes can contain large genomic segments obtained from distantly related species. These segments usually remain undetected, but they may play an important role in the evolution and adaptation of species.
Assuntos
Cromossomos Artificiais Bacterianos/genética , Hordeum/genética , Panicum/genética , Elementos de DNA Transponíveis/genética , Transferência Genética Horizontal/genética , Hibridização in Situ FluorescenteRESUMO
The efficient uptake of nutrients depends on the ability of roots to respond to gradients of these resources. Although pot experiments have shown that species differ in their ability to proliferate their roots in nutrient-rich patches, the role of such differences in determining root shapes in the field is unclear. We used fine-scale quantitative (q)PCR-based species-specific mapping of roots in a grassland community to reconstruct species-specific root system shapes. We linked them with data from pot experiments on the ability of these species to proliferate in nutrient-rich patches and their rooting depth. We found remarkable diversity in root system shapes, from cylindrical to conical. Interspecific differences in rooting depths in pots were the main determinant of rooting depths in the field, whereas differences in foraging ability played only a minor role. Although some species with strong foraging ability did place their roots into nutrient-rich soil layers, it was not a universal pattern. The results imply that although the vertical differentiation of grassland species is pronounced, it is primarily not driven by the differential plastic response of species to soil nutrient gradients. This may constrain the coexistence of species with similar rooting depths and may instead favour coexistence of species differing in their architectural blueprints.
Assuntos
Pradaria , Raízes de Plantas , Nutrientes , Raízes de Plantas/fisiologia , SoloRESUMO
The movement of nuclear DNA from one vascular plant species to another in the absence of fertilization is thought to be rare. Here, nonnative rRNA gene [ribosomal DNA (rDNA)] copies were identified in a set of 16 diploid barley (Hordeum) species; their origin was traceable via their internal transcribed spacer (ITS) sequence to five distinct Panicoideae genera, a lineage that split from the Pooideae about 60 Mya. Phylogenetic, cytogenetic, and genomic analyses implied that the nonnative sequences were acquired between 1 and 5 Mya after a series of multiple events, with the result that some current Hordeum sp. individuals harbor up to five different panicoid rDNA units in addition to the native Hordeum rDNA copies. There was no evidence that any of the nonnative rDNA units were transcribed; some showed indications of having been silenced via pseudogenization. A single copy of a Panicum sp. rDNA unit present in H. bogdanii had been interrupted by a native transposable element and was surrounded by about 70 kbp of mostly noncoding sequence of panicoid origin. The data suggest that horizontal gene transfer between vascular plants is not a rare event, that it is not necessarily restricted to one or a few genes only, and that it can be selectively neutral.
Assuntos
Núcleo Celular/genética , DNA Ribossômico/genética , Transferência Genética Horizontal , Filogenia , Poaceae/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA Ribossômico/química , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Diploide , Evolução Molecular , Genes de Plantas/genética , Hordeum/classificação , Hordeum/genética , Poaceae/classificação , Análise de Sequência de DNARESUMO
Satellite DNA (satDNA) is the most variable fraction of the eukaryotic genome. Related species share a common ancestral satDNA library and changing of any library component in a particular lineage results in interspecific differences. Although the general developmental trend is clear, our knowledge of the origin and dynamics of satDNAs is still fragmentary. Here, we explore whole genome shotgun Illumina reads using the RepeatExplorer (RE) pipeline to infer satDNA family life stories in the genomes of Chenopodium species. The seven diploids studied represent separate lineages and provide an example of a species complex typical for angiosperms. Application of the RE pipeline allowed by similarity searches a determination of the satDNA family with a basic monomer of ~40 bp and to trace its transformation from the reconstructed ancestral to the species-specific sequences. As a result, three types of satDNA family evolutionary development were distinguished: (i) concerted evolution with mutation and recombination events; (ii) concerted evolution with a trend toward increased complexity and length of the satellite monomer; and (iii) non-concerted evolution, with low levels of homogenization and multidirectional trends. The third type is an example of entire repeatome transformation, thus producing a novel set of satDNA families, and genomes showing non-concerted evolution are proposed as a significant source for genomic diversity.
Assuntos
Chenopodium/genética , DNA de Plantas/genética , DNA Satélite/genética , Diploide , Evolução Molecular , Componentes Genômicos , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
Hybridization and polyploidization represent an important speciation mechanism in the diploid-polyploid complex of the Chenopodium album aggregate. In the present study we successfully reconstructed the evolutionary histories of the majority of Eurasian representatives of the C. album aggregate, resulting in the most comprehensive phylogenetic analysis of this taxonomically intricate group of species to date. We applied a combination of classical karyology for precise chromosome number determination, genomic in-situ hybridization for the determination of genomic composition, flow cytometry for the estimation of genome size and sequencing of plastid (cpDNA) and nuclear (ribosomal internal transcribed spacer - ITS and the introns of the FLOWERING LOCUS T LIKE genes - FTL) markers for a phylogenetic reconstruction and the identification of parental genomes in polyploid taxa. The FTL markers identified eight well supported evolutionary lineages. Five of them include at least one diploid species, and the remaining three comprise solely the subgenomes of polyploids that probably represent extinct or unknown diploid taxa. The existence of eight basic diploid lineages explains the origin of seven Eurasian polyploid groups and brings evidence of a nearly unlimited number of subgenomic combinations. The supposed promiscuity generated new species wherever different diploid lineages met each other and gave rise to tetraploid species or whenever they met other tetraploid species to produce hexaploid species throughout their evolutionary history. Finally, we unravelled a surprisingly simple scheme of polyploid species formation within the C. album aggregate. We determined seven groups of polyploid species differing in their origin in either Eurasia or Africa and convincingly demonstrated that (1) all Chenopodium polyploid species under study are of allopolyploid origin, (2) there are eight major monophyletic evolutionary lineages represented by extant or extinct/unknown diploid taxa, (3) those monophyletic lineages represent individual subgenomes, (4) hybridization among the lineages created seven subgenomic combinations of polyploid taxa, (5) taxa represented by particular subgenome combinations were further subjected to diversification, and (6) the majority of species are relatively young, not exceeding the age of the Quaternary period.
Assuntos
Chenopodium album/citologia , Chenopodium album/genética , Hibridização Genética , Poliploidia , Sequência de Bases , Cromossomos de Plantas/genética , Evolução Molecular , Loci Gênicos , Marcadores Genéticos , Tamanho do Genoma , Filogenia , TetraploidiaRESUMO
Background and Aims: Knowledge of diploid phylogeny and ecogeography provide a foundation for understanding plant evolutionary history, diversification patterns and taxonomy. The genus Anthoxanthum (vernal grasses, Poaceae) represents a taxonomically intricate polyploid complex with large phenotypic variation and poorly resolved evolutionary relationships. The aims of the study were to reveal: (1) evolutionary lineages of the diploid taxa and their genetic differentiation; (2) the past distribution of the rediscovered 'Mediterranean diploid'; and (3) possible migration routes of diploids in the Mediterranean. Methods: A combined approach involving sequencing of two plastid regions ( trnL-trnF and rpl32-trnL ), nrDNA ITS, rDNA FISH analyses, climatic niche characterization and spatio-temporal modelling was used. Key Results: Among the examined diploid species, only two well-differentiated evolutionary lineages were recognized: Anthoxanthum gracile and A. alpinum . The other taxa - A. aristatum, A. ovatum, A. maderense and the 'Mediterranean diploid' - form a rather intermixed group based on the examined molecular data. In situ rDNA localization enabled identification of the ancestral Anthoxanthum karyotype, shared by A. gracile and two taxa from the crown group. For the studied taxa, ancestral location probabilities for six discrete geographical regions in the Mediterranean were proposed and likely scenarios of gradual expansion from them were suggested. Modelling past and present distributions shows that the 'Mediterranean diploid' has already been occurring in the same localities for 120 000 years. Conclusions: Highly congruent results were obtained and dated the origin and first diversification of Anthoxanthum to the Miocene. The later divergence probably took place in the Pleistocene and started polyploid evolution within the genus. The most recent diversification event is still occurring, and incomplete lineage sorting prevents full diversification of taxa at the molecular level, despite clear separation based on climatic niches. The 'Mediterranean diploid' is hypothesized to be a possible relic of the most recent common ancestor of Anthoxanthum due to their sharing of ancestral features.
Assuntos
Evolução Biológica , Diploide , Filogenia , Poaceae/classificação , DNA de Cloroplastos/genética , Região do MediterrâneoRESUMO
We reconstructed the historical pattern of postglacial biogeographic range expansion of the boreal tree species Alnus incana in Europe. To assess population genetic structure and diversity, we performed a combined analysis of nuclear microsatellite loci and chloroplast DNA sequences (65 populations, 1004 individuals). Analysis of haplotype and microsatellite diversity revealed that southeastern refugial populations situated in the Carpathians and the Balkan Peninsula did not spread north and cannot be considered as important source populations for postglacial recolonization of Europe; populations in Eastern Europe did not establish Fennoscandian populations; populations in Fennoscandia and Eastern Europe have no unique genetic cluster, but represent a mix with a predominant cluster typical for Central Europe; and that colonization of Fennoscandia and Eastern Europe took place from Central Europe. Our findings highlight the importance of an effective refugium in Central Europe located outside classical southern refugia confirming the existence of northern refugia for boreal trees in Europe. The postglacial range expansion of A. incana did not follow the model established for Picea abies. Fennoscandian populations are not derived from Eastern European ones, but from Central European ones.
Assuntos
Alnus/genética , Genética Populacional , Teorema de Bayes , DNA de Cloroplastos/genética , Variação Genética , Haplótipos , Repetições de Microssatélites/genética , Filogeografia , ÁrvoresRESUMO
BACKGROUND AND AIMS: Polyploidy in plants has been studied extensively. In many groups, two or more cytotypes represent separate biological entities with distinct distributions, histories and ecology. This study examines the distribution and origins of cytotypes of Alnus glutinosa in Europe, North Africa and western Asia. METHODS: A combined approach was used involving flow cytometry and microsatellite analysis of 12 loci in 2200 plants from 209 populations combined with species distribution modelling using MIROC and CCSM climatic models, in order to analyse (1) ploidy and genetic variation, (2) the origin of tetraploid A. glutinosa, considering A. incana as a putative parent, and (3) past distributions of the species. KEY RESULTS: The occurrence of tetraploid populations of A. glutinosa in Europe is determined for the first time. The distribution of tetraploids is far from random, forming two geographically well-delimited clusters located in the Iberian Peninsula and the Dinaric Alps. Based on microsatellite analysis, both tetraploid clusters are probably of autopolyploid origin, with no indication that A. incana was involved in their evolutionary history. A projection of the MIROC distribution model into the Last Glacial Maximum (LGM) showed that (1) populations occurring in the Iberian Peninsula and North Africa were probably interconnected during the LGM and (2) populations occurring in the Dinaric Alps did not exist throughout the last glacial periods, having retreated southwards into lowland areas of the Balkan Peninsula. CONCLUSIONS: Newly discovered tetraploid populations are situated in the putative main glacial refugia, and neither of them was likely to have been involved in the colonization of central and northern Europe after glacial withdrawal. This could mean that neither the Iberian Peninsula nor the western part of the Balkan Peninsula served as effective refugial areas for northward post-glacial expansion of A. glutinosa.
Assuntos
Alnus/citologia , Alnus/genética , Ecossistema , Citometria de Fluxo/métodos , Geografia , Repetições de Microssatélites/genética , Filogenia , Alelos , Diploide , Europa (Continente) , Genes de Plantas , Variação Genética , Poliploidia , Análise de Componente PrincipalRESUMO
Genetic admixture is supposed to be an important trigger of species expansions because it can create the potential for selection of genotypes suitable for new climatic conditions. Up until now, however, no continent-wide population genetic study has performed a detailed reconstruction of admixture events during natural species expansions. To fill this gap, we analysed the postglacial history of Alnus glutinosa, a keystone species of European swamp habitats, across its entire distribution range using two molecular markers, cpDNA and nuclear microsatellites. CpDNA revealed multiple southern refugia located in the Iberian, Apennine, Balkan and Anatolian Peninsulas, Corsica and North Africa. Analysis of microsatellites variation revealed three main directions of postglacial expansion: (i) from the northern part of the Iberian Peninsula to Western and Central Europe and subsequently to the British Isles, (ii) from the Apennine Peninsula to the Alps and (iii) from the eastern part of the Balkan Peninsula to the Carpathians followed by expansion towards the Northern European plains. This challenges the classical paradigm that most European populations originated from refugial areas in the Carpathians. It has been shown that colonizing lineages have met several times and formed secondary contact zones with unexpectedly high population genetic diversity in Central Europe and Scandinavia. On the contrary, limited genetic admixture in southern refugial areas of A. glutinosa renders rear-edge populations in the Mediterranean region more vulnerable to extinction due to climate change.
Assuntos
Alnus/genética , Mudança Climática , Variação Genética , Genética Populacional , Refúgio de Vida Selvagem , Teorema de Bayes , DNA de Cloroplastos/genética , DNA de Plantas/genética , Europa (Continente) , Evolução Molecular , Repetições de Microssatélites , Modelos Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
BACKGROUND AND AIMS: Recently formed allopolyploid species represent excellent subjects for exploring early stages of polyploid evolution. The hexaploid Cardamine schulzii was regarded as one of the few nascent allopolyploid species formed within the past â¼150 years that presumably arose by autopolyploidization of a triploid hybrid, C. × insueta; however, the most recent investigations have shown that it is a trigenomic hybrid. The aims of this study were to explore the efficiency of progenitor-specific microsatellite markers in detecting the hybrid origins and genome composition of these two allopolyploids, to estimate the frequency of polyploid formation events, and to outline their evolutionary potential for long-term persistence and speciation. METHODS: Flow-cytometric ploidy-level screening and genotyping by progenitor-specific microsatellite markers (20 microsatellite loci) were carried out on samples focused on hybridizing populations at Urnerboden, Switzerland, but also including comparative material of the parental species from other sites in the Alps and more distant areas. KEY RESULTS: It was confirmed that hybridization between the diploids C. amara and C. rivularis auct. gave rise to triploid C. × insueta, and it is inferred that this has occurred repeatedly. Evidence is provided that C. schulzii comprises three parental genomes and supports its origin from hybridization events between C. × insueta and the locally co-occurring hypotetraploid C. pratensis, leading to two cytotypes of C. schulzii: hypopentaploid and hypohexaploid. Each cytotype of C. schulzii is genetically uniform, suggesting their single origins. CONCLUSIONS: Persistence of C. schulzii has presumably been achieved only by perennial growth and clonal reproduction. This contrasts with C. × insueta, in which multiple origins and occasional sexual reproduction have generated sufficient genetic variation for long-term survival and evolutionary success. This study illustrates a complex case of recurrent hybridization and polyploidization events, and highlights the role of triploids that promoted the origin of trigenomic hybrids.
Assuntos
Evolução Biológica , Cardamine/genética , DNA de Plantas , Hibridização Genética , Repetições de Microssatélites , Poliploidia , Citometria de Fluxo , Marcadores Genéticos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , SuíçaRESUMO
Communities of arbuscular mycorrhizal fungi (AMF) are crucial for promoting plant productivity in most terrestrial systems, including anthropogenically managed ecosystems. Application of AMF inocula has therefore become a widespread practice. It is, however, pertinent to understand the mechanisms that govern AMF community composition and their performance in order to design successful manipulations. Here we assess whether the composition and plant growth-promotional effects of a synthetic AMF community can be altered by inoculum additions of the isolates forming the community. This was determined by following the effects of three AMF isolates, each inoculated in two propagule densities into a preestablished AMF community. Fungal abundance in roots and plant growth were evaluated in three sequential harvests. We found a transient positive response in AMF abundance to the intraspecific inoculation only in the competitively weakest isolate. The other two isolates responded negatively to intra- and interspecific inoculations, and in some cases plant growth was also reduced. Our results suggest that increasing the AMF density may lead to increased competition among fungi and a trade-off with their ability to promote plant productivity. This is a key ecological aspect to consider when introducing AMF into soils.
Assuntos
Biota , Fungos/classificação , Fungos/crescimento & desenvolvimento , Micorrizas/classificação , Micorrizas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Contagem de Colônia Microbiana , DNA Fúngico/química , DNA Fúngico/genética , Fungos/genética , Dados de Sequência Molecular , Micorrizas/genética , Desenvolvimento Vegetal , Análise de Sequência de DNARESUMO
Genome or genomic dominance (GD) is a phenomenon observed in hybrids when one parental genome becomes dominant over the other. It is manifested by the replacement of chromatin of the submissive genome by that of the dominant genome and by biased gene expression. Nucleolar dominance (ND) - the functional expression of only one parental set of ribosomal genes in hybrids - is another example of an intragenomic competitive process which, however, concerns ribosomal DNA only. Although GD and ND are relatively well understood, the nature and extent of their potential interdependence is mostly unknown. Here, we ask whether hybrids showing GD also exhibit ND and, if so, whether the dominant genome is the same. To test this, we used hybrids between Festuca and Lolium grasses (Festulolium), and between two Festuca species in which GD has been observed (with Lolium as the dominant genome in Festulolium and F. pratensis in interspecific Festuca hybrids). Using amplicon sequencing of ITS1 and ITS2 of the 45S ribosomal DNA (rDNA) cluster and molecular cytogenetics, we studied the organization and expression of rDNA in leaf tissue in five hybrid combinations, four generations and 31 genotypes [F. pratensis × L. multiflorum (F1, F2, F3, BC1), L. multiflorum × F. pratensis (F1), L. multiflorum × F. glaucescens (F2), L. perenne × F. pratensis (F1), F. glaucescens × F. pratensis (F1)]. We have found that instant ND occurs in Festulolium, where expression of Lolium-type rDNA reached nearly 100% in all F1 hybrids and was maintained through subsequent generations. Therefore, ND and GD in Festulolium are manifested by the same dominant genome (Lolium). We also confirmed the concordance between GD and ND in an interspecific cross between two Festuca species.
RESUMO
Quinoa (Chenopodium quinoa), an Andean pseudocereal, attained global popularity beginning in the early 2000s due to its protein quality, glycemic index, and high fiber, vitamin, and mineral contents. Pitseed goosefoot (Chenopodium berlandieri), quinoa's North American free-living sister species, grows on disturbed and sandy substrates across the North America, including saline coastal sands, southwestern deserts, subtropical highlands, the Great Plains, and boreal forests. Together with South American avian goosefoot (Chenopodium hircinum) they comprise the American tetraploid goosefoot complex (ATGC). Superimposed on pitseed goosefoot's North American range are approximately 35 AA diploids, most of which are adapted to a diversity of niche environments. We chose to assemble a reference genome for Sonoran A-genome Chenopodium watsonii due to fruit morphological and high (>99.3%) preliminary sequence-match similarities with quinoa, along with its well-established taxonomic status. The genome was assembled into 1377 scaffolds spanning 547.76 Mb (N50 = 55.14 Mb, L50 = 5), with 94% comprised in nine chromosome-scale scaffolds and 93.9% Benchmarking Universal Single-Copy Orthologs genes identified as single copy and 3.4% as duplicated. A high degree of synteny, with minor and mostly telomeric rearrangements, was found when comparing this taxon with the previously reported genome of South American C. pallidicaule and the A-subgenome chromosomes of C. quinoa. Phylogenetic analysis was performed using 10,588 single-nucleotide polymorphisms generated by resequencing a panel of 41 New World AA diploid accessions and the Eurasian H-genome diploid Chenopodium vulvaria, along with three AABB tetraploids previously sequenced. Phylogenetic analysis of these 32 taxa positioned the psammophyte Chenopodium subglabrum on the branch containing A-genome sequences from the ATGC. We also present evidence for long-range dispersal of Chenopodium diploids between North and South America.
Assuntos
Chenopodium quinoa , Chenopodium , Chenopodium quinoa/genética , Chenopodium/genética , Filogenia , Genoma de Planta , Tetraploidia , CromossomosRESUMO
Real-time PCR in nuclear ribosomal DNA (nrDNA) is becoming a well-established tool for the quantification of arbuscular mycorrhizal (AM) fungi, but this genomic region does not allow the specific amplification of closely related genotypes. The large subunit of mitochondrial DNA (mtDNA) has a higher-resolution power, but mtDNA-based quantification has not been previously explored in AM fungi. We applied real-time PCR assays targeting the large subunit of mtDNA to monitor the DNA dynamics of two isolates of Glomus intraradices sensu lato coexisting in the roots of medic (Medicago sativa). The mtDNA-based quantification was compared to quantification in nrDNA. The ratio of copy numbers determined by the nrDNA- and mtDNA-based assays consistently differed between the two isolates. Within an isolate, copy numbers of the nuclear and the mitochondrial genes were closely correlated. The two quantification approaches revealed similar trends in the dynamics of both isolates, depending on whether they were inoculated alone or together. After 12 weeks of cultivation, competition between the two isolates was observed as a decrease in the mtDNA copy numbers of one of them. The coexistence of two closely related isolates, which cannot be discriminated by nrDNA-based assays, was thus identified as a factor influencing the dynamics of AM fungal DNA in roots. Taken together, the results of this study show that real-time PCR assays targeted to the large subunit of mtDNA may become useful tools for the study of coexisting AM fungi.
Assuntos
Contagem de Colônia Microbiana/métodos , DNA Mitocondrial/genética , Glomeromycota/crescimento & desenvolvimento , Glomeromycota/genética , Medicago sativa/microbiologia , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , DNA Fúngico/química , DNA Fúngico/genética , Interações Microbianas , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
PREMISE OF THE STUDY: The development of three low-copy nuclear markers for low taxonomic level phylogenies in Asteraceae with emphasis on the subtribe Hieraciinae is reported. METHODS AND RESULTS: Marker candidates were selected by comparing a Lactuca complementary DNA (cDNA) library with public DNA sequence databases. Interspecific variation and phylogenetic signal of the selected genes were investigated for diploid taxa from the subtribe Hieraciinae and compared to a reference phylogeny. Their ability to cross-amplify was assessed for other Asteraceae tribes. All three markers had higher variation (2.1-4.5 times) than the internal transcribed spacer (ITS) in Hieraciinae. Cross-amplification was successful in at least seven other tribes of the Asteraceae. Only three cases indicating the presence of paralogs or pseudogenes were detected. CONCLUSIONS: The results demonstrate the potential of these markers for phylogeny reconstruction in the Hieraciinae as well as in other Asteraceae tribes, especially for very closely related species.
Assuntos
Asteraceae/genética , Núcleo Celular/genética , Genes de Plantas , Asteraceae/classificação , Sequência de Bases , Cromossomos de Plantas/genética , Biologia Computacional , Primers do DNA/genética , DNA Intergênico/genética , DNA de Plantas/genética , Diploide , Dosagem de Genes , Biblioteca Gênica , Marcadores Genéticos , Variação Genética , Filogenia , Pseudogenes , Análise de Sequência de DNARESUMO
BACKGROUND: CACTA transposable elements (TEs) comprise one of the most abundant superfamilies of Class 2 (cut-and-paste) transposons. Over recent decades, CACTA elements were widely identified in species from the plant, fungi, and animal kingdoms, but sufficiently studied in the genomes of only a few model species although non-model genomes can bring additional and valuable information. It primarily concerned the genomes of species belonging to clades in the base of large taxonomic groups whose genomes, to a certain extent, can preserve relict and/or possesses specific traits. Thus, we sought to investigate the genomes of Chenopodium (Amaranthaceae, Caryophyllales) species to unravel the structural variability of CACTA elements. Caryophyllales is a separate branch of Angiosperms and until recently the diversity of CACTA elements in this clade was unknown. RESULTS: Application of the short-read genome assembly algorithm followed by analysis of detected complete CACTA elements allowed for the determination of their structural diversity in the genomes of 22 Chenopodium album aggregate species. This approach yielded knowledge regarding: (i) the coexistence of two CACTA transposons subtypes in single genome; (ii) gaining of additional protein conserved domains within the coding sequence; (iii) the presence of captured gene fragments, including key genes for flower development; and (iv)) identification of captured satDNA arrays. Wide comparative database analysis revealed that identified events are scattered through Angiosperms in different proportions. CONCLUSIONS: Our study demonstrated that while preserving the basic element structure a wide range of coding and non-coding additions to CACTA transposons occur in the genomes of C. album aggregate species. Ability to relocate additions inside genome in combination with the proposed novel functional features of structural-different CACTA elements can impact evolutionary trajectory of the host genome.
RESUMO
Djulis (Chenopodium formosanum Koidz.) is a crop grown since antiquity in Taiwan. It is a BCD-genome hexaploid (2n = 6x = 54) domesticated form of lambsquarters (C. album L.) and a relative of the allotetraploid (AABB) C. quinoa. As with quinoa, djulis seed contains a complete protein profile and many nutritionally important vitamins and minerals. While still sold locally in Taiwanese markets, its traditional culinary uses are being lost as diets of younger generations change. Moreover, indigenous Taiwanese peoples who have long safeguarded djulis are losing their traditional farmlands. We used PacBio sequencing and Hi-C-based scaffolding to produce a chromosome-scale, reference-quality assembly of djulis. The final genome assembly spans 1.63â Gb in 798 scaffolds, with 97.8% of the sequence contained in 27 scaffolds representing the nine haploid chromosomes of each sub-genome of the species. Benchmarking of universal, single-copy orthologs indicated that 98.5% of the conserved orthologous genes for Viridiplantae are complete within the assembled genome, with 92.9% duplicated, as expected for a polyploid. A total of 67.8% of the assembly is repetitive, with the most common repeat being Gypsy long terminal repeat retrotransposons, which had significantly expanded in the B sub-genome. Gene annotation using Iso-Seq data from multiple tissues identified 75,056 putative gene models. Comparisons to quinoa showed strong patterns of synteny which allowed for the identification of homoeologous chromosomes, and sub-genome-specific sequences were used to assign homoeologs to each sub-genome. These results represent the first hexaploid genome assembly and the first assemblies of the C and D genomes of the Chenopodioideae subfamily.
Assuntos
Chenopodium , Chenopodium/genética , Cromossomos de Plantas/genética , Genoma de Planta , Poliploidia , SinteniaRESUMO
Nuclear ribosomal DNA (nrDNA) has displayed extraordinary dynamics during the evolution of plant species. However, the patterns and evolutionary significance of nrDNA array expansion or contraction are still relatively unknown. Moreover, only little is known of the fate of minority nrDNA copies acquired between species via horizontal transfer. The barley genus Hordeum (Poaceae) represents a good model for such a study, as species of section Stenostachys acquired nrDNA via horizontal transfer from at least five different panicoid genera, causing long-term co-existence of native (Hordeum-like) and non-native (panicoid) nrDNAs. Using quantitative PCR, we investigated copy number variation (CNV) of nrDNA in the diploid representatives of the genus Hordeum. We estimated the copy number of the foreign, as well as of the native ITS types (ribotypes), and followed the pattern of their CNV in relation to the genus' phylogeny, species' genomes size and the number of nrDNA loci. For the native ribotype, we encountered an almost 19-fold variation in the mean copy number among the taxa analysed, ranging from 1689 copies (per 2C content) in H. patagonicum subsp. mustersii to 31342 copies in H. murinum subsp. glaucum. The copy numbers did not correlate with any of the genus' phylogeny, the species' genome size or the number of nrDNA loci. The CNV was high within the recognised groups (up to 13.2 × in the American I-genome species) as well as between accessions of the same species (up to 4×). Foreign ribotypes represent only a small fraction of the total number of nrDNA copies. Their copy numbers ranged from single units to tens and rarely hundreds of copies. They amounted, on average, to between 0.1% (Setaria ribotype) and 1.9% (Euclasta ribotype) of total nrDNA. None of the foreign ribotypes showed significant differences with respect to phylogenetic groups recognised within the sect. Stenostachys. Overall, no correlation was found between copy numbers of native and foreign nrDNAs suggesting the sequestration and independent evolution of native and non-native nrDNA arrays. Therefore, foreign nrDNA in Hordeum likely poses a dead-end by-product of horizontal gene transfer events.
RESUMO
PREMISE: A set of polymorphic nuclear microsatellite loci was developed and tested for use in population genetic analyses of Anthericum ramosum (Agavaceae) and related species. METHODS AND RESULTS: Sequences of 110 primers were extracted in silico from Illumina MiSeq genome skimming data. The degree of polymorphism of 19 loci was tested in four A. ramosum populations collected in Central and Eastern Europe. The average number of alleles per loci ranged from two to 17, and levels of observed and expected heterozygosity ranged from 0.000 to 1.000 and from 0.100 to 0.900, respectively. Primers were successfully amplified in the closely related species A. liliago (12 loci) and Chlorophytum comosum (six loci), whereas they mostly failed to amplify in the phylogenetically more-distant species Muscari comosum (three loci) and M. tenuiflorum (no amplification). CONCLUSIONS: This newly developed set of polymorphic nuclear microsatellite markers will be useful for population genetic investigation of A. ramosum and closely related species.