Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Xenobiotica ; 47(6): 470-478, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27498589

RESUMO

1. Members of the cytochrome P450 3A (CYP3A) subfamily metabolize numerous compounds and serve as the loci of drug-drug interactions (DDIs). Because of high amino acid sequence identity with human CYP3A, the cynomolgus monkey has been proposed as a model species to support DDI risk assessment. 2. Therefore, the objective of this study was to evaluate 35 known inhibitors of human CYP3A using human (HLM) and cynomolgus monkey (CLM) liver microsomes. Midazolam was employed as substrate to generate IC50 values (concentration of inhibitor rendering 50% inhibition) in the absence and presence of a preincubation (30 mins) with NADPH. 3. In the absence of preincubation, the IC50 values generated with CLM were similar to those obtained with HLM (86% within 2-fold; 100% within 3-fold difference). However, significant differences (up to 48-fold) in preincubation IC50 were observed with 17% of the compounds (raloxifene, bergamottin, nicardipine, mibefradil, ritonavir, and diltiazem). 4. Our results indicate that in most cases the cynomolgus monkey can be a viable DDI model. However, significant species differences in time-dependent CYP3A inhibition can be observed for some compounds. In the case of raloxifene, such a difference can be ascribed to a specific CYP3A4 amino acid residue.


Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Animais , Inibidores do Citocromo P-450 CYP3A/metabolismo , Diltiazem , Interações Medicamentosas , Humanos , Cinética , Macaca fascicularis , Microssomos Hepáticos/metabolismo , Midazolam/metabolismo , Midazolam/farmacologia , Modelos Biológicos
2.
Pharmacogenet Genomics ; 20(11): 677-86, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20940534

RESUMO

OBJECTIVES: Cytochrome P450 (P450) oxidoreductase (POR) donates electrons to all microsomal cytochrome P450s, including drug-metabolizing and steroidogenic enzymes. Severe POR mutations cause skeletal malformations and disordered steroidogenesis. The POR polymorphism A503V is found on approximately 28% of human alleles and decreases activities of CYP3A4 and steroidogenic CYP17, but not the activities of steroidogenic CYP21 or drug-metabolizing CYP1A2 and CYP2C19. CYP2D6 metabolizes about 25% of clinically used drugs; we assessed the capacity of POR variants to support the activities of human CYP2D6. METHODS: N-27 forms of wildtype (WT), Q153R, A287P, R457H and A503V POR, and WT CYP2D6 were expressed in Escherichia coli. POR proteins in bacterial membranes were reconstituted with purified CYP2D6. Support of CYP2D6 was measured by metabolism of EOMCC (2H-1-benzopyran-3-carbonitrile,7-(ethoxy-methoxy)-2-oxo-(9Cl)), dextromethorphan and bufuralol. Michaelis constant (K(m)) and maximum velocity (V(max)) were determined in three triplicate experiments for each reaction; catalytic efficiency is expressed as V(max)/K(m). RESULTS: Compared with WT POR, disease-causing POR mutants A287P and R457H supported no detectable CYP2D6 activity with EOMCC, but A287P supported approximately 25% activity with dextromethorphan and bufuralol. Q153R had increased function with CYP2D6 (128% with EOMCC, 198% with dextromethorphan, 153% with bufuralol). A503V supported decreased CYP2D6 activity: 85% with EOMCC, 62% with dextromethorphan and 53% with bufuralol. CONCLUSION: POR variants have different effects depending on the substrate metabolized. Disease-causing POR mutations R457H and A287P had poor activities, suggesting that diminished drug metabolism should be considered in affected patients. The common A503V polymorphism impaired CYP2D6 activities with two commonly used drugs by 40-50%, potentially explaining some genetic variation in drug metabolism.


Assuntos
Citocromo P-450 CYP2D6/metabolismo , Variação Genética , NADPH-Ferri-Hemoproteína Redutase/genética , Benzopiranos/metabolismo , Catálise , Citocromo P-450 CYP2D6/genética , Dextrometorfano/farmacologia , Etanolaminas/farmacologia , Humanos , Inativação Metabólica/genética , Mutação , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Oxirredutases/genética , Polimorfismo Genético
3.
Mol Pharmacol ; 73(6): 1751-60, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18310303

RESUMO

There are a considerable number of reports identifying and characterizing genetic variants within the CYP2C9 coding region. Much less is known about polymorphic promoter sequences that also might contribute to interindividual differences in CYP2C9 expression. To address this problem, approximately 10,000 base pairs of CYP2C9 upstream information were resequenced using 24 DNA samples from the Coriell Polymorphism Discovery Resource. Thirty-one single-nucleotide polymorphisms (SNPs) were identified; nine SNPs were novel, whereas 22 were reported previously. Using both sequencing and multiplex single-base extension, individual SNP frequencies were determined in 193 DNA samples obtained from unrelated, self-reported Hispanic Americans of Mexican descent, and they were compared with similar data obtained from a non-Latino white cohort. Significant interethnic differences were observed in several SNP frequencies, some of which seemed unique to the Hispanic population. Analysis using PHASE 2.1 inferred nine common (>1%) variant haplotypes, two of which included the g.3608C>T (R144C) CYP2C9(*)2 and two the g.42614A>C (I359L) CYP2C9(*)3 SNPs. Haplotype variants were introduced into a CYP2C9/luciferase reporter plasmid using site-directed mutagenesis, and the impact of the variants on promoter activity assessed by transient expression in HepG2 cells. Both constitutive and pregnane X receptor-mediated inducible activities were measured. Haplotypes 1B, 3A, and 3B each exhibited a 65% decrease in constitutive promoter activity relative to the reference haplotype. Haplotypes 1D and 3B exhibited a 50% decrease and a 40% increase in induced promoter activity, respectively. These data suggest that genetic variation within CYP2C9 regulatory sequences is likely to contribute to differences in CYP2C9 phenotype both within and among different populations.


Assuntos
Hidrocarboneto de Aril Hidroxilases/biossíntese , Hidrocarboneto de Aril Hidroxilases/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Variação Genética/fisiologia , Regiões Promotoras Genéticas/fisiologia , Citocromo P-450 CYP2C9 , Feminino , Humanos , Americanos Mexicanos/genética , Polimorfismo de Nucleotídeo Único/fisiologia , Células Tumorais Cultivadas
4.
Expert Opin Drug Metab Toxicol ; 4(5): 591-603, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18484917

RESUMO

BACKGROUND: Determination of cytochrome P450 enzyme-mediated kinetics in vitro can be useful for predicting drug dosing and clearance in humans. Expressed P450s, human liver microsomes, human hepatocytes (both fresh and cryopreserved), and human liver slices are used to estimate K(m) and V(max) values for determination of intrinsic clearance of the drug for scale-up to predict in vivo clearance. OBJECTIVE: To describe the advantages and disadvantages of the various in vitro systems used to estimate kinetic parameters for disposition of drugs and the various kinetic profiles that can be observed. METHODS: A review of the literature was conducted to evaluate the utility of the various in vitro preparations, the methods for determining kinetic parameters and the types of kinetic profiles that may be observed. RESULTS/CONCLUSIONS: The choice of in vitro system for determining kinetic parameters will depend on the objective of the studies, as each system has advantages and disadvantages. Kinetic parameter determinations must be carefully assessed to assure that the correct kinetic model is applied and the most accurate kinetic parameters are determined.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Enzimas/metabolismo , Hepatócitos/metabolismo , Humanos , Técnicas In Vitro , Fígado/metabolismo , Microssomos/metabolismo , Farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA