Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Nat Rev Mol Cell Biol ; 18(11): 671-684, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28852221

RESUMO

Fatty acids are the most efficient substrates for energy production in vertebrates and are essential components of the lipids that form biological membranes. Synthesis of triacylglycerols from non-esterified free fatty acids (FFAs) combined with triacylglycerol storage represents a highly efficient strategy to stockpile FFAs in cells and prevent FFA-induced lipotoxicity. Although essentially all vertebrate cells have some capacity to store and utilize triacylglycerols, white adipose tissue is by far the largest triacylglycerol depot and is uniquely able to supply FFAs to other tissues. The release of FFAs from triacylglycerols requires their enzymatic hydrolysis by a process called lipolysis. Recent discoveries thoroughly altered and extended our understanding of lipolysis. This Review discusses how cytosolic 'neutral' lipolysis and lipophagy, which utilizes 'acid' lipolysis in lysosomes, degrade cellular triacylglycerols as well as how these pathways communicate, how they affect lipid metabolism and energy homeostasis and how their dysfunction affects the pathogenesis of metabolic diseases. Answers to these questions will likely uncover novel strategies for the treatment of prevalent metabolic diseases.


Assuntos
Tecido Adiposo Branco/metabolismo , Citosol/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lipólise , Lisossomos/metabolismo , Triglicerídeos/metabolismo , Tecido Adiposo Branco/patologia , Animais , Citosol/patologia , Metabolismo Energético , Humanos , Lisossomos/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Doenças Metabólicas/terapia
2.
J Proteome Res ; 23(4): 1506-1518, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422518

RESUMO

The metabolic contribution of the small intestine (SI) is still unclear despite recent studies investigating the involvement of single cells in regional differences. Using untargeted proteomics, we identified regional characteristics of the three intestinal tracts of C57BL/6J mice and found that proteins abundant in the mouse ileum correlated with the high ileal expression of the corresponding genes in humans. In the SI of C57BL/6J mice, we also detected an increasing abundance of lysosomal acid lipase (LAL), which is responsible for degrading triacylglycerols and cholesteryl esters within the lysosome. LAL deficiency in patients and mice leads to lipid accumulation, gastrointestinal disturbances, and malabsorption. We previously demonstrated that macrophages massively infiltrated the SI of Lal-deficient (KO) mice, especially in the duodenum. Using untargeted proteomics (ProteomeXchange repository, data identifier PXD048378), we revealed a general inflammatory response and a common lipid-associated macrophage phenotype in all three intestinal segments of Lal KO mice, accompanied by a higher expression of GPNMB and concentrations of circulating sTREM2. However, only duodenal macrophages activated a metabolic switch from lipids to other pathways, which were downregulated in the jejunum and ileum of Lal KO mice. Our results provide new insights into the process of absorption in control mice and possible novel markers of LAL-D and/or systemic inflammation in LAL-D.


Assuntos
Proteoma , Esterol Esterase , Animais , Camundongos , Ésteres do Colesterol/metabolismo , Jejuno , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Proteoma/genética , Esterol Esterase/genética , Esterol Esterase/metabolismo , Humanos
3.
Cardiovasc Diabetol ; 23(1): 298, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143620

RESUMO

BACKGROUND: Activation of brown adipose tissue (BAT) has gained attention due to its ability to dissipate energy and counteract cardiometabolic diseases (CMDs). METHODS: This study investigated the consequences of cold exposure on the BAT and liver proteomes of an established CMD mouse model based on LDL receptor-deficient (LdlrKO) mice fed a high-fat, high-sucrose, high-cholesterol diet for 16 weeks. We analyzed energy metabolism in vivo and performed untargeted proteomics on BAT and liver of LdlrKO mice maintained at 22 °C or 5 °C for 7 days. RESULTS: We identified several dysregulated pathways, miRNAs, and transcription factors in BAT and liver of cold-exposed Ldlrko mice that have not been previously described in this context. Networks of regulatory interactions based on shared downstream targets and analysis of ligand-receptor pairs identified fibrinogen alpha chain (FGA) and fibronectin 1 (FN1) as potential crosstalk factors between BAT and liver in response to cold exposure. Importantly, genetic variations in the genes encoding FGA and FN1 have been associated with cardiometabolic-related phenotypes and traits in humans. DISCUSSION: This study describes the key factors, pathways, and regulatory networks involved in the crosstalk between BAT and the liver in a cold-exposed CMD mouse model. These findings may provide a basis for future studies aimed at testing whether molecular mediators, as well as regulatory and signaling mechanisms involved in tissue adaption upon cold exposure, could represent a target in cardiometabolic disorders.


Assuntos
Tecido Adiposo Marrom , Temperatura Baixa , Modelos Animais de Doenças , Metabolismo Energético , Redes Reguladoras de Genes , Fígado , Camundongos Knockout , Proteômica , Receptores de LDL , Transdução de Sinais , Animais , Tecido Adiposo Marrom/metabolismo , Fígado/metabolismo , Metabolismo Energético/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Receptores de LDL/deficiência , Masculino , Fibrinogênio/metabolismo , Fibrinogênio/genética , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , MicroRNAs/genética , Fibronectinas/metabolismo , Fibronectinas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos , Regulação da Expressão Gênica , Mapas de Interação de Proteínas
4.
J Lipid Res ; 64(9): 100427, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595802

RESUMO

Lysosomal acid lipase (LAL) is the sole lysosomal enzyme responsible for the degradation of cholesteryl esters and triacylglycerols at acidic pH. Impaired LAL activity leads to LAL deficiency (LAL-D), a severe and fatal disease characterized by ectopic lysosomal lipid accumulation. Reduced LAL activity also contributes to the development and progression of non-alcoholic fatty liver disease (NAFLD). To advance our understanding of LAL-related liver pathologies, we performed comprehensive proteomic profiling of livers from mice with systemic genetic loss of LAL (Lal-/-) and from mice with hepatocyte-specific LAL-D (hepLal-/-). Lal-/- mice exhibited drastic proteome alterations, including dysregulation of multiple proteins related to metabolism, inflammation, liver fibrosis, and cancer. Global loss of LAL activity impaired both acidic and neutral lipase activities and resulted in hepatic lipid accumulation, indicating a complete metabolic shift in Lal-/- livers. Hepatic inflammation and immune cell infiltration were evident, with numerous upregulated inflammation-related gene ontology biological process terms. In contrast, both young and mature hepLal-/- mice displayed only minor changes in the liver proteome, suggesting that loss of LAL solely in hepatocytes does not phenocopy metabolic alterations observed in mice globally lacking LAL. These findings provide valuable insights into the mechanisms underlying liver dysfunction in LAL-D and may help in understanding why decreased LAL activity contributes to NAFLD. Our study highlights the importance of LAL in maintaining liver homeostasis and demonstrates the drastic consequences of its global deficiency on the liver proteome and liver function.


Assuntos
Neoplasias , Hepatopatia Gordurosa não Alcoólica , Doença de Wolman , Camundongos , Animais , Esterol Esterase/genética , Esterol Esterase/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica , Fígado/metabolismo , Doença de Wolman/genética , Doença de Wolman/metabolismo , Doença de Wolman/patologia , Cirrose Hepática/genética , Triglicerídeos/metabolismo , Inflamação/metabolismo , Neoplasias/metabolismo
5.
Cardiovasc Diabetol ; 22(1): 327, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017481

RESUMO

BACKGROUND: Matrix metalloproteinase 12 (MMP12) is a macrophage-secreted protein that is massively upregulated as a pro-inflammatory factor in metabolic and vascular tissues of mice and humans suffering from cardiometabolic diseases (CMDs). However, the molecular mechanisms explaining the contributions of MMP12 to CMDs are still unclear. METHODS: We investigated the impact of MMP12 deficiency on CMDs in a mouse model that mimics human disease by simultaneously developing adipose tissue inflammation, insulin resistance, and atherosclerosis. To this end, we generated and characterized low-density lipoprotein receptor (Ldlr)/Mmp12-double knockout (DKO) mice fed a high-fat sucrose- and cholesterol-enriched diet for 16-20 weeks. RESULTS: DKO mice showed lower cholesterol and plasma glucose concentrations and improved insulin sensitivity compared with LdlrKO mice. Untargeted proteomic analyses of epididymal white adipose tissue revealed that inflammation- and fibrosis-related pathways were downregulated in DKO mice. In addition, genetic deletion of MMP12 led to alterations in immune cell composition and a reduction in plasma monocyte chemoattractant protein-1 in peripheral blood which indicated decreased low-grade systemic inflammation. Aortic en face analyses and staining of aortic valve sections demonstrated reduced atherosclerotic plaque size and collagen content, which was paralleled by an improved relaxation pattern and endothelial function of the aortic rings and more elastic aortic sections in DKO compared to LdlrKO mice. Shotgun proteomics revealed upregulation of anti-inflammatory and atheroprotective markers in the aortas of DKO mice, further supporting our data. In humans, MMP12 serum concentrations were only weakly associated with clinical and laboratory indicators of CMDs. CONCLUSION: We conclude that the genetic deletion of MMP12 ameliorates obesity-induced low-grade inflammation, white adipose tissue dysfunction, biomechanical properties of the aorta, and the development of atherosclerosis. Therefore, therapeutic strategies targeting MMP12 may represent a promising approach to combat CMDs.


Assuntos
Aterosclerose , Resistência à Insulina , Placa Aterosclerótica , Animais , Humanos , Camundongos , Aterosclerose/genética , Aterosclerose/prevenção & controle , Colesterol , Modelos Animais de Doenças , Inflamação/genética , Inflamação/metabolismo , Metaloproteinase 12 da Matriz/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteômica , Receptores de LDL/genética
6.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834530

RESUMO

Monoglyceride lipase (MGL) hydrolyzes monoacylglycerols (MG) to glycerol and one fatty acid. Among the various MG species, MGL also degrades 2-arachidonoylglycerol, the most abundant endocannabinoid and potent activator of the cannabinoid receptors 1 and 2. We investigated the consequences of MGL deficiency on platelet function using systemic (Mgl-/-) and platelet-specific Mgl-deficient (platMgl-/-) mice. Despite comparable platelet morphology, loss of MGL was associated with decreased platelet aggregation and reduced response to collagen activation. This was reflected by reduced thrombus formation in vitro, accompanied by a longer bleeding time and a higher blood volume loss. Occlusion time after FeCl3-induced injury was markedly reduced in Mgl-/- mice, which is consistent with contraction of large aggregates and fewer small aggregates in vitro. The absence of any functional changes in platelets from platMgl-/- mice is in accordance with lipid degradation products or other molecules in the circulation, rather than platelet-specific effects, being responsible for the observed alterations in Mgl-/- mice. We conclude that genetic deletion of MGL is associated with altered thrombogenesis.


Assuntos
Monoacilglicerol Lipases , Monoglicerídeos , Animais , Camundongos , Endocanabinoides/metabolismo , Lipólise , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoacilglicerol Lipases/genética
7.
Mol Cell Proteomics ; 19(12): 2104-2115, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33023980

RESUMO

Despite the crucial function of the small intestine in nutrient uptake our understanding of the molecular events underlying the digestive function is still rudimentary. Recent studies demonstrated that enterocytes do not direct the entire dietary triacylglycerol toward immediate chylomicron synthesis. Especially after high-fat challenges, parts of the resynthesized triacylglycerol are packaged into cytosolic lipid droplets for transient storage in the endothelial layer of the small intestine. The reason for this temporary storage of triacylglycerol is not completely understood. To utilize lipids from cytosolic lipid droplets for chylomicron synthesis in the endoplasmic reticulum, stored triacylglycerol has to be hydrolyzed either by cytosolic lipolysis or lipophagy. Interestingly, triacylglycerol storage and chylomicron secretion rates are unevenly distributed along the small intestine, with the proximal jejunum exhibiting the highest intermittent storage capacity. We hypothesize that correlating hydrolytic enzyme activities with the reported distribution of triacylglycerol storage and chylomicron secretion in different sections of the small intestine is a promising strategy to determine key enzymes in triacylglycerol remobilization. We employed a serine hydrolase specific activity-based labeling approach in combination with quantitative proteomics to identify and rank hydrolases based on their relative activity in 11 sections of the small intestine. Moreover, we identified several clusters of enzymes showing similar activity distribution along the small intestine. Merging our activity-based results with substrate specificity and subcellular localization known from previous studies, carboxylesterase 2e and arylacetamide deacetylase emerge as promising candidates for triacylglycerol mobilization from cytosolic lipid droplets in enterocytes.


Assuntos
Intestino Delgado/enzimologia , Lipase/metabolismo , Proteômica , Animais , Hidrolases/metabolismo , Masculino , Camundongos Endogâmicos C57BL
8.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293139

RESUMO

Advanced maternal age and obesity are the main risk factors to develop gestational diabetes mellitus (GDM). Obesity is a consequence of the increased storage of triacylglycerol (TG). Cytosolic and lysosomal lipid hydrolases break down TG and cholesteryl esters (CE) to release fatty acids (FA), free cholesterol, and glycerol. We have recently shown that intracellular lipases are present and active in the mouse placenta and that deficiency of lysosomal acid lipase alters placental and fetal lipid homeostasis. To date, intracellular lipid hydrolysis in GDM has been poorly studied despite the important role of FA in this condition. Therefore, we hypothesized that intracellular lipases are dysregulated in pregnancies complicated by maternal high-fat/high-cholesterol (HF/HCD) feeding with and without GDM. Placentae of HF/HCD-fed mice with and without GDM were more efficient, indicating increased nutrient transfer to the fetus. The increased activity of placental CE but not TG hydrolases in placentae of dams fed HF/HCD with or without GDM resulted in upregulated cholesterol export to the fetus and placental TG accumulation. Our results indicate that HF/HCD-induced dysregulation of placental lipid hydrolysis contributes to fetal hepatic lipid accumulation and possibly to fetal overgrowth, at least in mice.


Assuntos
Diabetes Gestacional , Humanos , Gravidez , Feminino , Camundongos , Animais , Placenta , Esterol Esterase , Hidrólise , Ésteres do Colesterol , Glicerol , Macrossomia Fetal , Obesidade/complicações , Ácidos Graxos , Triglicerídeos , Lipase
9.
Histochem Cell Biol ; 155(5): 593-603, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33404705

RESUMO

Preservation of ultrastructural features in biological samples for electron microscopy (EM) is a challenging task that is routinely accomplished through chemical fixation or high-pressure freezing coupled to automated freeze substitution (AFS) using specialized devices. However, samples from clinical (e.g. "biobanking" of bulk biopsies) and preclinical (e.g. whole mouse tissues) specimens are often not specifically prepared for ultrastructural analyses but simply immersed in liquid nitrogen before long-term cryo-storage. We demonstrate that ultrastructural features of such samples are insufficiently conserved using AFS and developed a simple, rapid, and effective method for thawing that does not require specific instrumentation. This procedure consists of dry ice-cooled pre-trimming of frozen tissue and aldehyde fixation for 3 h at 37 °C followed by standard embedding steps. Herein investigated tissues comprised human term placentae, clinical lung samples, as well as mouse tissues of different composition (brown adipose tissue, white adipose tissue, cardiac muscle, skeletal muscle, liver). For all these tissues, we compared electron micrographs prepared from cryo-stored material with our method to images derived from directly prepared fresh tissues with standard chemical fixation. Our protocol yielded highly conserved ultrastructural features and tissue-specific details, largely matching the quality of fresh tissue samples. Furthermore, morphometric analysis of lipid droplets and mitochondria in livers of fasted mice demonstrated that statistically valid quantifications can be derived from samples prepared with our method. Overall, we provide a simple and effective protocol for accurate ultrastructural and morphometric analyses of cryo-stored bulk tissue samples.


Assuntos
Criopreservação , Congelamento , Gotículas Lipídicas/ultraestrutura , Fígado/ultraestrutura , Mitocôndrias/ultraestrutura , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica
10.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638755

RESUMO

Cholesterol and fatty acids are essential lipids that are critical for membrane biosynthesis and fetal organ development. Cholesteryl esters (CE) are degraded by hormone-sensitive lipase (HSL) in the cytosol and by lysosomal acid lipase (LAL) in the lysosome. Impaired LAL or HSL activity causes rare pathologies in humans, with HSL deficiency presenting less severe clinical manifestations. The infantile form of LAL deficiency, a lysosomal lipid storage disorder, leads to premature death. However, the importance of defective lysosomal CE degradation and its consequences during early life are incompletely understood. We therefore investigated how defective CE catabolism affects fetus and infant maturation using Lal and Hsl knockout (-/-) mouse models. This study demonstrates that defective lysosomal but not neutral lipolysis alters placental and fetal cholesterol homeostasis and exhibits an initial disease pathology already in utero as Lal-/- fetuses accumulate hepatic lysosomal lipids. Immediately after birth, LAL deficiency exacerbates with massive hepatic lysosomal lipid accumulation, which continues to worsen into young adulthood. Our data highlight the crucial role of LAL during early development, with the first weeks after birth being critical for aggravating LAL deficiency.


Assuntos
Lipólise , Fígado , Lisossomos , Esterol Esterase/deficiência , Doença de Wolman , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Humanos , Fígado/metabolismo , Fígado/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Camundongos Knockout , Doença de Wolman/genética , Doença de Wolman/metabolismo , Doença de Wolman/patologia , Doença de Wolman
11.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450841

RESUMO

Endothelial lipase (EL) is a strong modulator of the high-density lipoprotein (HDL) structure, composition, and function. Here, we examined the impact of EL on HDL paraoxonase 1 (PON1) content and arylesterase (AE) activity in vitro and in vivo. The incubation of HDL with EL-overexpressing HepG2 cells decreased HDL size, PON1 content, and AE activity. The EL modification of HDL did not diminish the capacity of HDL to associate with PON1 when EL-modified HDL was incubated with PON1-overexpressing cells. The overexpression of EL in mice significantly decreased HDL serum levels but unexpectedly increased HDL PON1 content and HDL AE activity. Enzymatically inactive EL had no effect on the PON1 content of HDL in mice. In healthy subjects, EL serum levels were not significantly correlated with HDL levels. However, HDL PON1 content was positively associated with EL serum levels. The EL-induced changes in the HDL-lipid composition were not linked to the HDL PON1 content. We conclude that primarily, the interaction of enzymatically active EL with HDL, rather than EL-induced alterations in HDL size and composition, causes PON1 displacement from HDL in vitro. In vivo, the EL-mediated reduction of HDL serum levels and the consequently increased PON1-to-HDL ratio in serum increase HDL PON1 content and AE activity in mice. In humans, additional mechanisms appear to underlie the association of EL serum levels and HDL PON1 content.


Assuntos
Arildialquilfosfatase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Endotélio/enzimologia , Lipase/metabolismo , Lipoproteínas HDL/metabolismo , Arildialquilfosfatase/química , Hidrolases de Éster Carboxílico/química , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Lipase/sangue , Lipase/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Ligação Proteica
12.
FASEB J ; 33(12): 13808-13824, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31638418

RESUMO

N-acetylaspartate (NAA) is synthesized by aspartate N-acetyltransferase (gene: Nat8l) from acetyl-coenzyme A and aspartate. In the brain, NAA is considered an important energy metabolite for lipid synthesis. However, the role of NAA in peripheral tissues remained elusive. Therefore, we characterized the metabolic phenotype of knockout (ko) and adipose tissue-specific (ako) Nat8l-ko mice as well as NAA-supplemented mice on various diets. We identified an important role of NAA availability in the brain during adolescence, as 75% of Nat8l-ko mice died on fat-free diet (FFD) after weaning but could be rescued by NAA supplementation. In adult life, NAA deficiency promotes a beneficial metabolic phenotype, as Nat8l-ko and Nat8l-ako mice showed reduced body weight, increased energy expenditure, and improved glucose tolerance on chow, high-fat, and FFDs. Furthermore, Nat8l-deficient adipocytes exhibited increased mitochondrial respiration, ATP synthesis, and an induction of browning. Conversely, NAA-treated wild-type mice showed reduced adipocyte respiration and lipolysis and increased de novo lipogenesis, culminating in reduced energy expenditure, glucose tolerance, and insulin sensitivity. Mechanistically, our data point to a possible role of NAA as modulator of pancreatic insulin secretion and suggest NAA as a critical energy metabolite for adipocyte and whole-body energy homeostasis.-Hofer, D. C., Zirkovits, G., Pelzmann, H. J., Huber, K., Pessentheiner, A. R., Xia, W., Uno, K., Miyazaki, T., Kon, K., Tsuneki, H., Pendl, T., Al Zoughbi, W., Madreiter-Sokolowski, C. T., Trausinger, G., Abdellatif, M., Schoiswohl, G., Schreiber, R., Eisenberg, T., Magnes, C., Sedej, S., Eckhardt, M., Sasahara, M., Sasaoka, T., Nitta, A., Hoefler, G., Graier, W. F., Kratky, D., Auwerx, J., Bogner-Strauss, J. G. N-acetylaspartate availability is essential for juvenile survival on fat-free diet and determines metabolic health.


Assuntos
Ácido Aspártico/análogos & derivados , Acetilcoenzima A/metabolismo , Acetiltransferases/metabolismo , Adipócitos/metabolismo , Animais , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Dieta com Restrição de Gorduras , Metabolismo Energético/fisiologia , Resistência à Insulina/fisiologia , Lipólise/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo
13.
Circ Res ; 122(10): 1369-1384, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29523554

RESUMO

RATIONALE: Macrophages face a substantial amount of cholesterol after the ingestion of apoptotic cells, and the LIPA (lysosomal acid lipase) has a major role in hydrolyzing cholesteryl esters in the endocytic compartment. OBJECTIVE: Here, we directly investigated the role of LIPA-mediated clearance of apoptotic cells both in vitro and in vivo. METHODS AND RESULTS: We show that LIPA inhibition causes a defective efferocytic response because of impaired generation of 25-hydroxycholesterol and 27-hydroxycholesterol. Reduced synthesis of 25-hydroxycholesterol after LIPA inhibition contributed to defective mitochondria-associated membrane leading to mitochondrial oxidative stress-induced NLRP3 (NOD-like receptor family, pyrin domain containing) inflammasome activation and caspase-1-dependent Rac1 (Ras-related C3 botulinum toxin substrate 1) degradation. A secondary event consisting of failure to appropriately activate liver X receptor-mediated pathways led to mitigation of cholesterol efflux and apoptotic cell clearance. In mice, LIPA inhibition caused defective clearance of apoptotic lymphocytes and stressed erythrocytes by hepatic and splenic macrophages, culminating in splenomegaly and splenic iron accumulation under hypercholesterolemia. CONCLUSIONS: Our findings position lysosomal cholesterol hydrolysis as a critical process that prevents metabolic inflammation by enabling efficient macrophage apoptotic cell clearance.


Assuntos
Colesterol/metabolismo , Inflamação/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Oxisteróis/metabolismo , Esterol Esterase/metabolismo , Animais , Apoptose , Transporte Biológico , Ésteres do Colesterol/metabolismo , Eritrócitos/metabolismo , Hidrólise , Hipercolesterolemia/metabolismo , Inflamassomos/metabolismo , Receptores X do Fígado/metabolismo , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuropeptídeos/metabolismo , Receptores de LDL/metabolismo , Esplenomegalia/metabolismo , Esterol Esterase/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
Mol Cell Neurosci ; 99: 103390, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31276749

RESUMO

Aberrant insulin signaling constitutes an early change in Alzheimer's disease (AD). Insulin receptors (IR) and low-density lipoprotein receptor-related protein-1 (LRP-1) are expressed in brain capillary endothelial cells (BCEC) forming the blood-brain barrier (BBB). There, insulin may regulate the function of LRP-1 in Aß clearance from the brain. Changes in IR-ß and LRP-1 and insulin signaling at the BBB in AD are not well understood. Herein, we identified a reduction in cerebral and cerebrovascular IR-ß levels in 9-month-old male and female 3XTg-AD (PS1M146V, APPSwe, and tauP301L) as compared to NTg mice, which is important in insulin mediated signaling responses. Reduced cerebral IR-ß levels corresponded to impaired insulin signaling and LRP-1 levels in brain. Reduced cerebral and cerebrovascular IR-ß and LRP-1 levels in 3XTg-AD mice correlated with elevated levels of autophagy marker LC3B. In both genotypes, high-fat diet (HFD) feeding decreased cerebral and hepatic LRP-1 expression and elevated cerebral Aß burden without affecting cerebrovascular LRP-1 and IR-ß levels. In vitro studies using primary porcine (p)BCEC revealed that Aß peptides 1-40 or 1-42 (240 nM) reduced cellular levels and interaction of LRP-1 and IR-ß thereby perturbing insulin-mediated signaling. Further mechanistic investigation revealed that Aß treatment accelerated the autophagy-lysosomal degradation of IR-ß and LRP-1 in pBCEC. LRP-1 silencing in pBCEC decreased IR-ß levels through post-translational pathways further deteriorating insulin-mediated responses at the BBB. Our findings indicate that LRP-1 proves important for insulin signaling at the BBB. Cerebral Aß burden in AD may accelerate LRP-1 and IR-ß degradation in BCEC thereby contributing to impaired cerebral and cerebromicrovascular insulin effects.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Insulina/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais , Peptídeos beta-Amiloides/farmacologia , Animais , Autofagia , Barreira Hematoencefálica/citologia , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Suínos
15.
Int J Mol Sci ; 21(3)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050431

RESUMO

During inflammation, activated leukocytes release cytotoxic mediators that compromise blood-brain barrier (BBB) function. Under inflammatory conditions, myeloperoxidase (MPO) is critically involved in inflicting BBB damage. We used genetic and pharmacological approaches to investigate whether MPO induces aberrant lipid homeostasis at the BBB in a murine endotoxemia model. To corroborate findings in a human system we studied the impact of sera from sepsis and non-sepsis patients on brain endothelial cells (hCMEC/D3). In response to endotoxin, the fatty acid, ceramide, and sphingomyelin content of isolated mouse brain capillaries dropped and barrier dysfunction occurred. In mice, genetic deficiency or pharmacological inhibition of MPO abolished these alterations. Studies in metabolic cages revealed increased physical activity and less pronounced sickness behavior of MPO-/- compared to wild-type mice in response to sepsis. In hCMEC/D3 cells, exogenous tumor necrosis factor α (TNFα) potently regulated gene expression of pro-inflammatory cytokines and a set of genes involved in sphingolipid (SL) homeostasis. Notably, treatment of hCMEC/D3 cells with sera from septic patients reduced cellular ceramide concentrations and induced barrier and mitochondrial dysfunction. In summary, our in vivo and in vitro data revealed that inflammatory mediators including MPO, TNFα induce dysfunctional SL homeostasis in brain endothelial cells. Genetic and pharmacological inhibition of MPO attenuated endotoxin-induced alterations in SL homeostasis in vivo, highlighting the potential role of MPO as drug target to treat inflammation-induced brain dysfunction.


Assuntos
Encéfalo/irrigação sanguínea , Células Endoteliais/metabolismo , Peroxidase/metabolismo , Sepse/metabolismo , Esfingolipídeos/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Capilares/metabolismo , Capilares/patologia , Linhagem Celular , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/patologia , Homeostase , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Sepse/patologia
16.
Cell Physiol Biochem ; 53(3): 573-586, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31529929

RESUMO

BACKGROUND/AIMS: In our recent work, the importance of GSK3ß-mediated phosphorylation of presenilin-1 as crucial process to establish a Ca2+ leak in the endoplasmic reticulum and, subsequently, the pre-activation of resting mitochondrial activity in ß-cells was demonstrated. The present work is a follow-up and reveals the importance of GSK3ß-phosphorylated presenilin-1 for responsiveness of pancreatic islets and ß-cells to elevated glucose in terms of cytosolic Ca2+ spiking and insulin secretion. METHODS: Freshly isolated pancreatic islets and the two pancreatic ß-cell lines INS-1 and MIN-6 were used. Cytosolic Ca2+ was fluorometrically monitored using Fura-2/AM and cellular insulin content and secretion were measured by ELISA. RESULTS: Our data strengthened our previous findings of the existence of a presenilin-1-mediated ER-Ca2+ leak in ß-cells, since a reduction of presenilin-1 expression strongly counteracted the ER Ca2+ leak. Furthermore, our data revealed that cytosolic Ca2+ spiking upon administration of high D-glucose was delayed in onset time and strongly reduced in amplitude and frequency upon siRNA-mediated knock-down of presenilin-1 or the inhibition of GSK3ß in the pancreatic ß-cells. Moreover, glucose-triggered initial insulin secretion disappeared by depletion from presenilin-1 and inhibition of GSK3ß in the pancreatic ß-cells and isolated pancreatic islets, respectively. CONCLUSION: These data complement our previous work and demonstrate that the sensitivity of pancreatic islets and ß-cells to glucose illustrated as glucose-triggered cytosolic Ca2+ spiking and initial but not long-lasting insulin secretion crucially depends on a strong ER Ca2+ leak that is due to the phosphorylation of presenilin-1 by GSK3ß, a phenomenon that might be involved in the development of type 2 diabetes.


Assuntos
Retículo Endoplasmático/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Presenilina-1/metabolismo , Animais , Antracenos/farmacologia , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Humanos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , MAP Quinase Quinase 4/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
17.
Cell Physiol Biochem ; 52(1): 57-75, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30790505

RESUMO

BACKGROUND/AIMS: In pancreatic ß-cells, the intracellular Ca²âº homeostasis is an essential regulator of the cells major functions. The endoplasmic reticulum (ER) as interactive intracellular Ca²âº store balances cellular Ca²âº. In this study basal ER Ca²âº homeostasis was evaluated in order to reveal potential ß-cell-specificity of ER Ca²âº handling and its consequences for mitochondrial Ca²âº, ATP and respiration. METHODS: The two pancreatic cell lines INS-1 and MIN-6, freshly isolated pancreatic islets, and the two non-pancreatic cell lines HeLA and EA.hy926 were used. Cytosolic, ER and mitochondrial Ca²âº and ATP measurements were performed using single cell fluorescence microscopy and respective (genetically-encoded) sensors/dyes. Mitochondrial respiration was monitored by respirometry. GSK3ß activity was measured with ELISA. RESULTS: An atypical ER Ca²âº leak was observed exclusively in pancreatic islets and ß-cells. This continuous ER Ca²âº efflux is directed to mitochondria and increases basal respiration and organellar ATP levels, is established by GSK3ß-mediated phosphorylation of presenilin-1, and is prevented by either knockdown of presenilin-1 or an inhibition/knockdown of GSK3ß. Expression of a presenlin-1 mutant that mimics GSK3ß-mediated phosphorylation established a ß-cell-like ER Ca²âº leak in HeLa and EA.hy926 cells. The ER Ca²âº loss in ß-cells was compensated at steady state by Ca²âº entry that is linked to the activity of TRPC3. CONCLUSION: Pancreatic ß-cells establish a cell-specific ER Ca²âº leak that is under the control of GSK3ß and directed to mitochondria, thus, reflecting a cell-specific intracellular Ca²âº handling for basal mitochondrial activity.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Presenilina-1/metabolismo , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Glicogênio Sintase Quinase 3 beta/genética , Células HeLa , Humanos , Masculino , Camundongos , Mitocôndrias/genética , Fosforilação , Presenilina-1/genética , Ratos
18.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(4): 467-478, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29374543

RESUMO

Lysosomal acid lipase (LAL) is the only known enzyme, which hydrolyzes cholesteryl esters and triacylglycerols in lysosomes of multiple cells and tissues. Here, we explored the role of LAL in brown adipose tissue (BAT). LAL-deficient (Lal-/-) mice exhibit markedly reduced UCP1 expression in BAT, modified BAT morphology with accumulation of lysosomes, and mitochondrial dysfunction, consequently leading to regular hypothermic events in mice kept at room temperature. Cold exposure resulted in reduced lipid uptake into BAT, thereby aggravating dyslipidemia and causing life threatening hypothermia in Lal-/- mice. Linking LAL as a potential regulator of lipoprotein lipase activity, we found Angptl4 mRNA expression upregulated in BAT. Our data demonstrate that LAL is critical for shuttling fatty acids derived from circulating lipoproteins to BAT during cold exposure. We conclude that inhibited lysosomal lipid hydrolysis in BAT leads to impaired thermogenesis in Lal-/- mice.


Assuntos
Tecido Adiposo Marrom/metabolismo , Ácidos Graxos/metabolismo , Esterol Esterase/metabolismo , Termogênese , Acetilcoenzima A/metabolismo , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/ultraestrutura , Animais , Autofagia , Temperatura Corporal , Carnitina/análogos & derivados , Carnitina/metabolismo , Temperatura Baixa , Progressão da Doença , Dislipidemias/metabolismo , Dislipidemias/patologia , Metabolismo Energético , Glucose/metabolismo , Hipotermia Induzida , Gotículas Lipídicas/metabolismo , Lipólise , Masculino , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Oxirredução , Consumo de Oxigênio , Esterol Esterase/deficiência , Proteína Desacopladora 1/metabolismo
19.
J Biol Chem ; 291(34): 17977-87, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27354281

RESUMO

Lysosomal acid lipase (LAL) is essential for the clearance of endocytosed cholesteryl ester and triglyceride-rich chylomicron remnants. Humans and mice with defective or absent LAL activity accumulate large amounts of cholesteryl esters and triglycerides in multiple tissues. Although chylomicrons also contain retinyl esters (REs), a role of LAL in the clearance of endocytosed REs has not been reported. In this study, we found that murine LAL exhibits RE hydrolase activity. Pharmacological inhibition of LAL in the human hepatocyte cell line HepG2, incubated with chylomicrons, led to increased accumulation of REs in endosomal/lysosomal fractions. Furthermore, pharmacological inhibition or genetic ablation of LAL in murine liver largely reduced in vitro acid RE hydrolase activity. Interestingly, LAL-deficient mice exhibited increased RE content in the duodenum and jejunum but decreased RE content in the liver. Furthermore, LAL-deficient mice challenged with RE gavage exhibited largely reduced post-prandial circulating RE content, indicating that LAL is required for efficient nutritional vitamin A availability. In summary, our results indicate that LAL is the major acid RE hydrolase and required for functional retinoid homeostasis.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Duodeno/enzimologia , Jejuno/enzimologia , Retinoides/metabolismo , Esterol Esterase/metabolismo , Animais , Hidrolases de Éster Carboxílico/genética , Ésteres do Colesterol/genética , Ésteres do Colesterol/metabolismo , Remanescentes de Quilomícrons/genética , Remanescentes de Quilomícrons/metabolismo , Humanos , Camundongos , Camundongos Knockout , Retinoides/genética , Esterol Esterase/genética , Triglicerídeos/genética , Triglicerídeos/metabolismo
20.
Biochim Biophys Acta ; 1861(9 Pt A): 1132-1141, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27344248

RESUMO

Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1(-/-)) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1(-/-) and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia.


Assuntos
Colesterol/metabolismo , Diacilglicerol O-Aciltransferase/genética , Hipercolesterolemia/tratamento farmacológico , Metabolismo dos Lipídeos/genética , Triglicerídeos/metabolismo , Animais , Diacilglicerol O-Aciltransferase/deficiência , Diacilglicerol O-Aciltransferase/metabolismo , Gorduras na Dieta , Ácidos Graxos/metabolismo , Hipercolesterolemia/metabolismo , Absorção Intestinal/genética , Lipogênese/genética , Fígado/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA