RESUMO
Controlled human infections provide opportunities to study the interaction between the immune system and malaria parasites, which is essential for vaccine development. Here, we compared immune signatures of malaria-naive Europeans and of Africans with lifelong malaria exposure using mass cytometry, RNA sequencing and data integration, before and 5 and 11 days after venous inoculation with Plasmodium falciparum sporozoites. We observed differences in immune cell populations, antigen-specific responses and gene expression profiles between Europeans and Africans and among Africans with differing degrees of immunity. Before inoculation, an activated/differentiated state of both innate and adaptive cells, including elevated CD161+CD4+ T cells and interferon-γ production, predicted Africans capable of controlling parasitemia. After inoculation, the rapidity of the transcriptional response and clusters of CD4+ T cells, plasmacytoid dendritic cells and innate T cells were among the features distinguishing Africans capable of controlling parasitemia from susceptible individuals. These findings can guide the development of a vaccine effective in malaria-endemic regions.
Assuntos
Imunidade Adaptativa/imunologia , Suscetibilidade a Doenças/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Imunidade Adaptativa/genética , Adolescente , Adulto , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , População Negra/genética , Células Dendríticas/imunologia , Suscetibilidade a Doenças/sangue , Suscetibilidade a Doenças/parasitologia , Feminino , Voluntários Saudáveis , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferon gama/metabolismo , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Masculino , RNA-Seq , Análise de Sistemas , Linfócitos T/imunologia , Linfócitos T/metabolismo , População Branca/genética , Adulto JovemRESUMO
Cellular metabolism is a key determinant of immune cell function. Here we found that CD14+ monocytes from Sub-Saharan Africans produce higher levels of IL-10 following TLR-4 stimulation and are bioenergetically distinct from monocytes from Europeans. Through metabolomic profiling, we identified the higher IL-10 production to be driven by increased baseline production of NADPH oxidase-dependent reactive oxygen species, supported by enhanced pentose phosphate pathway activity. Together, these data indicate that NADPH oxidase-derived ROS is a metabolic checkpoint in monocytes that governs their inflammatory profile and uncovers a metabolic basis for immunological differences across geographically distinct populations.
RESUMO
Controlled human malaria infections (CHMI) are a valuable tool to study parasite gene expression in vivo under defined conditions. In previous studies, virulence gene expression was analyzed in samples from volunteers infected with the Plasmodium falciparum (Pf) NF54 isolate, which is of African origin. Here, we provide an in-depth investigation of parasite virulence gene expression in malaria-naïve European volunteers undergoing CHMI with the genetically distinct Pf 7G8 clone, originating in Brazil. Differential expression of var genes, encoding major virulence factors of Pf, PfEMP1s, was assessed in ex vivo parasite samples as well as in parasites from the in vitro cell bank culture that was used to generate the sporozoites (SPZ) for CHMI (Sanaria PfSPZ Challenge (7G8)). We report broad activation of mainly B-type subtelomeric located var genes at the onset of a 7G8 blood stage infection in naïve volunteers, mirroring the NF54 expression study and suggesting that the expression of virulence-associated genes is generally reset during transmission from the mosquito to the human host. However, in 7G8 parasites, we additionally detected a continuously expressed single C-type variant, Pf7G8_040025600, that was most highly expressed in both pre-mosquito cell bank and volunteer samples, suggesting that 7G8, unlike NF54, maintains expression of some previously expressed var variants during transmission. This suggests that in a new host, the parasite may preferentially express the variants that previously allowed successful infection and transmission. Trial registration: ClinicalTrials.gov - NCT02704533; 2018-004523-36.
Assuntos
Culicidae , Malária Falciparum , Malária , Parasitos , Animais , Humanos , Culicidae/genética , Expressão Gênica , Malária Falciparum/genética , Malária Falciparum/parasitologia , Parasitos/genética , Plasmodium falciparum/genética , Esporozoítos , Virulência/genéticaRESUMO
Immunization through repeated direct venous inoculation of Plasmodium falciparum (Pf) sporozoites (PfSPZ) under chloroquine chemoprophylaxis, using the PfSPZ Chemoprophylaxis Vaccine (PfSPZ-CVac), induces high-level protection against controlled human malaria infection (CHMI). Humoral and cellular immunity contribute to vaccine efficacy but only limited information about the implicated Pf-specific antigens is available. Here, we examined Pf-specific antibody profiles, measured by protein arrays representing the full Pf proteome, of 40 placebo- and PfSPZ-immunized malaria-naïve volunteers from an earlier published PfSPZ-CVac dose-escalation trial. For this purpose, we both utilized and adapted supervised machine learning methods to identify predictive antibody profiles at two different time points: after immunization and before CHMI. We developed an adapted multitask support vector machine (SVM) approach and compared it to standard methods, i.e. single-task SVM, regularized logistic regression and random forests. Our results show, that the multitask SVM approach improved the classification performance to discriminate the protection status based on the underlying antibody-profiles while combining time- and dose-dependent data in the prediction model. Additionally, we developed the new fEature diStance exPlainabilitY (ESPY) method to quantify the impact of single antigens on the non-linear multitask SVM model and make it more interpretable. In conclusion, our multitask SVM model outperforms the studied standard approaches in regard of classification performance. Moreover, with our new explanation method ESPY, we were able to interpret the impact of Pf-specific antigen antibody responses that predict sterile protective immunity against CHMI after immunization. The identified Pf-specific antigens may contribute to a better understanding of immunity against human malaria and may foster vaccine development.
Assuntos
Anticorpos Antiprotozoários , Aprendizado de Máquina , Vacinas Antimaláricas , Malária Falciparum , Plasmodium falciparum , Vacinas Antimaláricas/imunologia , Humanos , Plasmodium falciparum/imunologia , Malária Falciparum/prevenção & controle , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/sangue , Eficácia de Vacinas , Máquina de Vetores de Suporte , Biologia Computacional/métodosRESUMO
We detected a novel GII.4 variant with an amino acid insertion at the start of epitope A in viral protein 1 of noroviruses from the United States, Gabon, South Africa, and the United Kingdom collected during 2017-2022. Early identification of GII.4 variants is crucial for assessing pandemic potential and informing vaccine development.
Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Humanos , Gastroenterite/epidemiologia , Norovirus/genética , Infecções por Caliciviridae/epidemiologia , Genótipo , Pandemias , FilogeniaRESUMO
Helminthiasis remains a public health issue in endemic areas. Various drugs have been proposed to improve efficacy against helminths. The study aimed to assess the safety and efficacy of three different anthelmintic combinations to treat Trichuris trichiura infections. We conducted a randomized assessors-blind clinical trial involving children aged 2-17 years with T. trichiura. Participants were randomly assigned to one of three treatment arms. On the first and third days, all participants got albendazole 400 mg, and on the second day, albendazole (arm A), mebendazole 500 mg (arm B), or pyrantel 125 mg/kg (arm C). We assessed treatment efficacy using the cure rate (CR) and egg reduction rate (ERR) at 3 and 6 weeks post-treatment. At 3 weeks post-treatment, ERR and CR were highest in study arm A [ERR = 94%, 95% confidence interval (CI): 92-95; CR = 71%; 95% CI: 58-81] compared to the B and C arms. Decrease in ERR was significant only for arm B versus arm A (P-value <0.001); decrease in ERR was significant for arms B and C (P-value <0.001). No statistical difference was observed in CR when comparing arms A and B (P-value =1.00) and C (P-value =0.27). At 6 weeks, a decrease in ERR was observed in three arms, significant only for arm C, 81% (95% CI: 78-83). A significant increase in egg counts was observed between 3 and 6 weeks post-treatment. All treatments were safe with mild adverse events. Albendazole 400 mg/day (arm A) showed the highest efficacy against trichuriasis. Nonetheless, this treatment regimen was able to cure half of the treated individuals highlighting concerns about controlling the transmission of T. trichiura.CLINICAL TRIALRegistered at ClinicalTrials.gov (NCT04326868).
Assuntos
Albendazol , Anti-Helmínticos , Mebendazol , Pirantel , Tricuríase , Trichuris , Humanos , Albendazol/uso terapêutico , Albendazol/efeitos adversos , Albendazol/administração & dosagem , Criança , Mebendazol/uso terapêutico , Tricuríase/tratamento farmacológico , Masculino , Feminino , Trichuris/efeitos dos fármacos , Animais , Pré-Escolar , Anti-Helmínticos/uso terapêutico , Anti-Helmínticos/efeitos adversos , Anti-Helmínticos/administração & dosagem , Adolescente , Pirantel/uso terapêutico , Quimioterapia Combinada , Resultado do Tratamento , Contagem de Ovos de ParasitasRESUMO
PURPOSE: The consequent use of malaria rapid diagnostic tests (RDTs) preceding a treatment decision has improved the global management of malaria. A combination RDT, including an inflammation marker to potentially guide antibiotic prescription, could improve the management of acute febrile illness (AFI). METHODS: We performed a prospective, cross-sectional study in Gabon evaluating the STANDARD Malaria/CRP DUO (S-DUO) RDT. Participants aged 2 to 17 years with fever at presentation and/or a history of fever < 7 days were enrolled. Expert microscopy, SD Bioline Malaria Ag P.f/Pan test for malaria detection, and NycoCard CRP device for CRP were used as comparators. AFI cases were classified on a spectrum encompassing bacterial vs. non-bacterial infection. RESULTS: 415 participants with AFI were enrolled. S-DUO RDT sensitivity and specificity for malaria detection vs. microscopy were 99·1% (95·2-100%) and 72·7% (64·3-80·1%); and for CRP detection (20 mg/L and above) 86·9% (80-92%) and 87% (79·2-92·7%), respectively. The difference in CRP levels between bacterial infection (mean = 41·2 mg/L) and other causes of fever, measured from our study population using the Nycocard device, was statistically significant (p < 0·01); CRP precision-recall AUC to distinguish bacterial infection class vs. non-bacterial classifications was 0·79. CONCLUSION: S-DUO RDT is suitable for malaria detection in moderate-to-high malaria transmission settings such as in Lambaréné; however, a CRP band detection limit > 40 mg/L is more adequate for indication of antibiotic prescription for AFI cases in Gabon.
RESUMO
BACKGROUND: Insecticides are a crucial component of vector control. However, resistance constitute a threat on their efficacy and the gains obtained over the years through malaria vector control. In Gabon, little data on phenotypic insecticide resistance in Anopheles vectors are published, compromising the rational implementation of resistance management strategies. We assessed the susceptibility to pyrethroids, carbamates and organophosphates of Anopheles gambiae sensu lato (s.l.) and discuss the mechanisms involved in the pyrethroid resistance-phenotype. METHODS: A. gambiae s.l. larvae were collected from breeding sites in Lambaréné. Emerging adults were used in WHO tube assays at an insecticide concentration that defines resistance (diagnostic concentration). Subsequently, deltamethrin and permethrin were used at 5x and 10x diagnostic concentrations and after preexposure with the cytochrome p450 (and glutathione S-transferase) inhibitor piperonyl butoxide (PBO). A subset of mosquitoes was typed by molecular methods and screened using Taqman assays for mutations conferring target site resistance at the Voltage-gated sodium channel 1014 (Vgsc-1014) locus and the acetylcholinesterase (Ace-1) gene. RESULTS: All mosquitoes were A. gambiae sensu stricto (s.s.) and resistant to permethrin, deltamethrin and alphacypermethrin (mortality less than 98%). However, mosquitoes were susceptible to malathion but resistant to bendiocarb. The level of resistance was high for permethrin and at least moderate for deltamethrin. Pre-exposure to PBO significantly increased the mortality of resistant mosquitoes (P < 0.0001). They became fully susceptible to deltamethrin and permethrin-induced mortality increased 4-fold. The G119S Ace-1 resistance allele, which confers resistance to both organophosphates and carbamates, was not present. All sampled mosquitoes were either homozygous for the Vgsc-L1014F or heterozygous for Vgsc-L1014F/L1014S, a marker for resistance to pyrethroids and organochlorides. CONCLUSION: These findings demonstrate a role of cytochrome P450 monooxygenases in the pyrethroid-resistance of A. gambiae s.s. from Lambaréné. Combining PBO with pyrethroids, as done in second generation bednets, may be used to revert resistance. In addition, malathion could also be used in combination with pyrethroids-based methods for resistance management.
Assuntos
Anopheles , Sistema Enzimático do Citocromo P-450 , Resistência a Inseticidas , Inseticidas , Piretrinas , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Anopheles/enzimologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Piretrinas/farmacologia , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Gabão , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/genética , Mosquitos Vetores/enzimologia , Permetrina/farmacologia , Nitrilas/farmacologia , Larva/efeitos dos fármacos , Larva/genética , Butóxido de Piperonila/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo , Acetilcolinesterase/metabolismo , Acetilcolinesterase/genética , FemininoRESUMO
Single-cell antigen-receptor gene amplification and sequencing platforms have been used to characterize T cell receptor (TCR) repertoires but typically fail to generate paired full-length gene products for direct expression cloning and do not enable linking this data to cell phenotype information. To overcome these limitations, we established a high-throughput platform for the quantitative and qualitative analysis of human TCR repertoires that provides insights into the clonal and functional composition of human CD4+ and CD8+ αß T cells at the molecular and cellular level. The strategy is a powerful tool to qualitatively assess differences between antigen receptors of phenotypically defined αß T cell subsets, e.g. in immune responses to cancer, vaccination, or infection, and in autoimmune diseases.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta , Análise de Célula Única , Adulto , Feminino , Humanos , Masculino , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologiaRESUMO
INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic resulted in a race to develop effective treatments largely through drug repurposing via adaptive platform trials on a global scale. Drug repurposing trials have focused on potential antiviral therapies aimed at preventing viral replication, anti-inflammatory agents, antithrombotic agents and immune modulators through a number of adaptive platform trials. Living systematic reviews have also enabled evidence synthesis and network meta-analysis as clinical trial data emerge globally. SOURCES OF DATA: Recent published literature. AREAS OF AGREEMENT: Corticosteroids and immunomodulators that antagonize the interleukin-6 (IL-6) receptor have been shown to play a critical role in modulating inflammation and improving clinical outcomes in hospitalized patients. Inhaled budesonide reduces the time to recovery in older patients with mild-to-moderate COVID-19 managed in the community. AREAS OF CONTROVERSY: The clinical benefit of remdesivir remains controversial with conflicting evidence from different trials. Remdesivir led to a reduction in time to clinical recovery in the ACTT-1 trial. However, the World Health Organization SOLIDARITY and DISCOVERY trial did not find a significant benefit on 28-day mortality and clinical recovery. GROWING POINTS: Other treatments currently being investigated include antidiabetic drug empagliflozin, antimalarial drug artesunate, tyrosine kinase inhibitor imatinib, immunomodulatory drug infliximab, antiviral drug favipiravir, antiparasitic drug ivermectin and antidepressant drug fluvoxamine. AREAS TIMELY FOR DEVELOPING RESEARCH: The timing of therapeutic interventions based on postulated mechanisms of action and the selection of clinically meaningful primary end points remain important considerations in the design and implementation of COVID-19 therapeutic trials.
Assuntos
COVID-19 , Idoso , Humanos , Corticosteroides , Antivirais/uso terapêutico , Reposicionamento de Medicamentos , Mesilato de Imatinib , Ensaios Clínicos Controlados Aleatórios como Assunto , Revisões Sistemáticas como AssuntoRESUMO
BACKGROUND: Rotavirus A (RVA) infections remain a major cause of severe acute diarrhea affecting children worldwide. To date, rapid diagnostic tests (RDT) are widely used to detect RVA. However, paediatricians question whether the RDT can still detect the virus accurately. Therefore, this study aimed to evaluate the performance of the rapid rotavirus test in comparison to the one-step RT-qPCR method. METHODS: A cross-sectional study was conducted in Lambaréné, Gabon, from April 2018 to November 2019. Stool samples were collected from children under 5 years of age with diarrhoea or a history of diarrhoea within the last 24 h, and from asymptomatic children from the same communities. All stool samples were processed and analysed using the SD BIOLINE Rota/Adeno Ag RDT against a quantitative reverse transcription PCR (RT-qPCR), which is considered the gold standard. RESULTS: For a total of 218 collected stool samples, the overall sensitivity of the RDT was 46.46% (confidence interval (CI) 36.38-56.77), with a specificity of 96.64% (CI 91.62-99.08) compared to one-step RT-qPCR. After confirming the presence or absence of RVA gastroenteritis, the RDT showed suitable results in detecting rotavirus A-associated disease, with a 91% concordance with the RT-qPCR. Furthermore, the performance of this test varied when correlated with seasonality, symptoms, and rotavirus genotype. CONCLUSION: This RDT showed high sensitivity and was suitable for the detection of RVA in patients with RVA gastroenteritis, although some asymptomatic RVA shedding was missed by RT-qPCR. It could be a useful diagnostic tool, especially in low-income countries.
Assuntos
Infecções por Enterovirus , Gastroenterite , Infecções por Rotavirus , Rotavirus , Criança , Humanos , Lactente , Pré-Escolar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estudos Transversais , Diarreia/diagnóstico , Rotavirus/genética , Infecções por Rotavirus/diagnósticoRESUMO
BACKGROUND: Pyrethroids are the main insecticides used in vector control for malaria. However, their extensive use in the impregnation of long-lasting insecticidal nets (LLINs) and indoor residual spraying has led to the development of resistance, threatening its success as a tool for malaria control. Baseline data prior to large scale distribution of LLINs are important for the implementation of efficient strategies. However, no data on the susceptibility of malaria vectors is available in the Moyen-Ogooué Province in Gabon. The aim of this study was to assess the susceptibility to pyrethroids and organochlorides of malaria vectors from a semi-urban and rural areas of the province and to determine the frequency of insecticide resistance genes. METHODS: Larvae were collected from breeding sites in Lambaréné and Zilé and reared to adults. Three to five-day old female Anopheles gambiae sensu lato mosquitoes were used in cone tube assays following the WHO susceptibility tests protocol for adult mosquitoes. A subsample was molecularly identified using the SINE200 protocol and the frequency of Vgsc-1014 F and - 1014 S mutations were determined. RESULTS: Anopheles gambiae sensu stricto (s.s.) was the sole species present in both Lambaréné and Zilé. Mosquito populations from the two areas were resistant to pyrethroids and organochlorides. Resistance was more pronounced for permethrin and DDT with mortality lower than 7% for both insecticides in the two study areas. Mosquitoes were statistically more resistant (P < 0.0001) to deltamethrin in Lambaréné (51%) compared to Zilé (76%). All the mosquitoes tested were heterozygous or homozygous for the knockdown resistance (Kdr) mutations Vgsc-L1014F and Vgsc-L1014S with a higher proportion of Vgsc-L1014F homozygous in Lambaréné (76.7%) compared to Zilé (57.1%). CONCLUSION: This study provides evidence of widespread resistance to pyrethroids in An. gambiae s.s., the main malaria vector in the Moyen-Ogooué Province. Further investigation of the mechanisms underlining the resistance of An. gambiae s.s. to pyrethroids is needed to implement appropriate insecticide resistance management strategies.
Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Feminino , Piretrinas/farmacologia , Inseticidas/farmacologia , Anopheles/genética , DDT/farmacologia , Gabão , Mosquitos Vetores/genética , Resistência a Inseticidas/genética , Controle de Mosquitos/métodosRESUMO
PURPOSE: Fever is a common cause for hospitalization among the pediatric population. The spectrum of causative agents is diverse. Human herpesvirus 6 (HHV-6) is a ubiquitous virus that often causes hospitalization of children in western countries. Previously, we investigated the cause of fever of 600 febrile hospitalized children in Gabon, and in 91 cases the causative pathogen was not determined. In this study, we assessed HHV-6 infection as potential cause of hospitalization in this group. METHODS: Blood samples were assessed for HHV-6 using real-time quantitative PCR. Three groups were investigated: (1) group of interest: 91 hospitalized children with febrile illness without a diagnosed causing pathogen; (2) hospitalized control: 91 age-matched children hospitalized with febrile illness with a potentially disease-causing pathogen identified; both groups were recruited at the Albert Schweitzer Hospital in Lambaréné, Gabon and (3) healthy control: 91 healthy children from the same area. RESULTS: Samples from 273 children were assessed. Age range was two months to 14 years, median (IQR) age was 36 (12-71) months; 52% were female. HHV-6 was detected in 64% (58/91), 41% (37/91), and 26% (24/91) of the samples from groups 1, 2, and 3, respectively; with statistically significant odds of being infected with HHV-6 in group 1 (OR = 4.62, 95% CI [2.46, 8.90]). Only HHV-6B was detected. CONCLUSIONS: Although tropical diseases account for a large proportion of children's hospitalizations, considering common childhood diseases such as HHV-6 when diagnosing febrile illnesses in pediatric populations in tropical countries is of importance.
Assuntos
Infecções por Herpesviridae , Herpesvirus Humano 6 , Criança , Humanos , Feminino , Lactente , Pré-Escolar , Masculino , Herpesvirus Humano 6/genética , Criança Hospitalizada , Gabão/epidemiologia , Febre/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Herpesviridae/complicações , Infecções por Herpesviridae/diagnósticoRESUMO
A highly protective malaria vaccine would greatly facilitate the prevention and elimination of malaria and containment of drug-resistant parasites. A high level (more than 90%) of protection against malaria in humans has previously been achieved only by immunization with radiation-attenuated Plasmodium falciparum (Pf) sporozoites (PfSPZ) inoculated by mosquitoes; by intravenous injection of aseptic, purified, radiation-attenuated, cryopreserved PfSPZ ('PfSPZ Vaccine'); or by infectious PfSPZ inoculated by mosquitoes to volunteers taking chloroquine or mefloquine (chemoprophylaxis with sporozoites). We assessed immunization by direct venous inoculation of aseptic, purified, cryopreserved, non-irradiated PfSPZ ('PfSPZ Challenge') to malaria-naive, healthy adult volunteers taking chloroquine for antimalarial chemoprophylaxis (vaccine approach denoted as PfSPZ-CVac). Three doses of 5.12 × 104 PfSPZ of PfSPZ Challenge at 28-day intervals were well tolerated and safe, and prevented infection in 9 out of 9 (100%) volunteers who underwent controlled human malaria infection ten weeks after the last dose (group III). Protective efficacy was dependent on dose and regimen. Immunization with 3.2 × 103 (group I) or 1.28 × 104 (group II) PfSPZ protected 3 out of 9 (33%) or 6 out of 9 (67%) volunteers, respectively. Three doses of 5.12 × 104 PfSPZ at five-day intervals protected 5 out of 8 (63%) volunteers. The frequency of Pf-specific polyfunctional CD4 memory T cells was associated with protection. On a 7,455 peptide Pf proteome array, immune sera from at least 5 out of 9 group III vaccinees recognized each of 22 proteins. PfSPZ-CVac is a highly efficacious vaccine candidate; when we are able to optimize the immunization regimen (dose, interval between doses, and drug partner), this vaccine could be used for combination mass drug administration and a mass vaccination program approach to eliminate malaria from geographically defined areas.
Assuntos
Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Vacinas Atenuadas/imunologia , Adolescente , Adulto , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Cloroquina/uso terapêutico , Método Duplo-Cego , Voluntários Saudáveis , Humanos , Memória Imunológica/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Pessoa de Meia-Idade , Plasmodium falciparum/classificação , Esporozoítos/imunologia , Linfócitos T/imunologia , Fatores de Tempo , Vacinas Atenuadas/administração & dosagem , Adulto JovemRESUMO
Malaria caused by the apicomplexan parasite Plasmodium falciparum has served as a strong evolutionary force throughout human history, selecting for red blood cell polymorphisms that confer innate protection against severe disease. Recently, gain-of-function mutations in the mechanosensitive ion channel PIEZO1 were shown to ameliorate Plasmodium parasite growth, blood-brain barrier dysfunction, and mortality in a mouse model of malaria. In humans, the gain-of-function allele PIEZO1 E756del is highly prevalent and enriched in Africans, raising the possibility that it is under positive selection due to malaria. Here we used a case-control study design to test for an association between PIEZO1 E756del and malaria severity among children in Gabon. We found that the E756del variant is strongly associated with protection against severe malaria in heterozygotes. In subjects with sickle cell trait, heterozygosity for PIEZO1 E756del did not confer additive protection and homozygosity was associated with an elevated risk of severe disease, suggesting an epistatic relationship between hemoglobin S and PIEZO1 E756del. Using donor blood samples, we show that red cells heterozygous for PIEZO1 E756del are not dehydrated and can support the intracellular growth of P. falciparum similar to wild-type cells. However, surface expression of the P. falciparum virulence protein PfEMP-1 was significantly reduced in infected cells heterozygous for PIEZO1 756del, a phenomenon that has been observed with other protective polymorphisms, such as hemoglobin C. Our findings demonstrate that PIEZO1 is an important innate determinant of malaria susceptibility in humans and suggest that the mechanism of protection may be related to impaired export of P. falciparum virulence proteins.
Assuntos
Resistência à Doença/genética , Canais Iônicos/genética , Malária Falciparum/genética , Plasmodium falciparum/isolamento & purificação , Traço Falciforme/genética , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Análise Mutacional de DNA , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Feminino , Gabão , Mutação com Ganho de Função , Humanos , Lactente , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Masculino , Polimorfismo Genético , Fatores de Proteção , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismoRESUMO
Bleeding associated with endothelial damage is a key feature of severe dengue fever. In the current study, we investigated whether Notch ligands were associated with bleeding in 115 patients with confirmed dengue infection in Vietnam. Soluble Notch ligands were determined by means of enzyme-linked immunosorbent assay. Seventeen of 115 patients (14.8%) experienced bleeding manifestations. High soluble delta-like ligand 1 (sDLL1) plasma levels was associated with bleeding (median, 15 674 vs 7117 pg/mL; Pâ <â .001). Receiver operating characteristic (ROC) curve analysis demonstrated that sDLL1 had the best test performance (area under the ROC curve, 0.852), with 88% sensitivity and 84% specificity. The combination with alanine aminotransferase and aspartate aminotransferase slightly increased sDLL1 performance. sDLL1 may be useful to guide clinical management of patients with patients in endemic settings.
Assuntos
Dengue , Dengue Grave , Alanina Transaminase , Aspartato Aminotransferases , Proteínas de Ligação ao Cálcio , Dengue/complicações , Humanos , Ligantes , Proteínas de Membrana , Dengue Grave/complicaçõesRESUMO
We read with interest the publication on malaria treatment by Obonyo et al. (Malaria J 21:30, 2022). This commentary questions the methodology, especially the chosen time points of treatment outcome measures.
Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Combinação de Medicamentos , Etanolaminas/uso terapêutico , Fluorenos/uso terapêutico , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Quinina/uso terapêutico , Resultado do TratamentoRESUMO
BACKGROUND: Antibody and cellular memory responses following vaccination are important measures of immunogenicity. These immune markers were quantified in the framework of a vaccine trial investigating the malaria vaccine candidate GMZ2. METHODS: Fifty Gabonese adults were vaccinated with two formulations (aluminum Alhydrogel and CAF01) of GMZ2 or a control vaccine (Verorab). Vaccine efficacy was assessed using controlled human malaria infection (CHMI) by direct venous inoculation of 3200 live Plasmodium falciparum sporozoites (PfSPZ Challenge). GMZ2-stimulated T and specific B-cell responses were estimated by flow cytometry before and after vaccination. Additionally, the antibody response against 212 P. falciparum antigens was estimated before CHMI by protein microarray. RESULTS: Frequencies of pro- and anti-inflammatory CD4+ T cells stimulated with the vaccine antigen GMZ2 as well as B cell profiles did not change after vaccination. IL-10-producing CD4+ T cells and CD20+ IgG+ B cells were increased post-vaccination regardless of the intervention, thus could not be specifically attributed to any malaria vaccine regimen. In contrast, GMZ2-specific antibody response increased after the vaccination, but was not correlated to protection. Antibody responses to several P. falciparum blood and liver stage antigens (MSP1, MSP4, MSP8, PfEMP1, STARP) as well as the breadth of the malaria-specific antibody response were significantly higher in protected study participants. CONCLUSIONS: In lifelong malaria exposed adults, the main marker of protection against CHMI is a broad antibody pattern recognizing multiple stages of the plasmodial life cycle. Despite vaccination with GMZ2 using a novel formulation, expansion of the GMZ2-stimulated T cells or the GMZ2-specific B cell response was limited, and the vaccine response could not be identified as a marker of protection against malaria. Trial registration PACTR; PACTR201503001038304; Registered 17 February 2015; https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=1038.
Assuntos
Vacinas Antimaláricas , Malária Falciparum , Adulto , Anticorpos Antiprotozoários , Formação de Anticorpos , Humanos , Malária Falciparum/prevenção & controle , Plasmodium falciparum , VoluntáriosRESUMO
BACKGROUND: The present study aimed to evaluate the diagnostic utility of creatine kinase-MB (CK-MB), hepcidin (HEPC), phospholipase A2 group IIA (PLa2G2A), and myosin-binding protein C (MYBPC1) for tuberculosis (TB). These four biomarkers are differentially regulated between quiescent Mycobacterium tuberculosis (Mtb) infected individuals (non-progressors to TB disease) and Mtb-infected TB disease progressors 6 months before the onset of symptoms. METHODS: We enrolled samples from patients experiencing moderate-to-severe pulmonary infections diseases including 23 TB cases confirmed by smear microscopy and culture, and 34 TB-negative cases. For each participant, the serum levels of the four biomarkers were measured using ELISA. RESULTS: The levels of CK-MB and HEPC were significantly reduced in patients with active TB disease. CK-MB median level was 2045 pg/ml (1455-4000 pg/ml) in active TB cases and 3245 pg/ml (1645-4000 pg/ml) in non-TB pulmonary diseases. Using the receiver operating characteristic curve (ROC) analysis, HEPC and CK-MB had the Area Under the Curve (AUC) of 79% (95% CI 67-91%) and 81% (95% CI 69-93%), respectively. Both markers correlated with TB diagnosis as a single marker. PLa2G2A and MYBPC1 with AUCs of 48% (95% CI 36-65%) and 62% (95% CI 48-76%) did not performed well as single biomarkers. The three markers'model (CK-MB-HEPC-PLa2G2A) had the highest diagnostic accuracy at 82% (95% CI 56-82%) after cross-validation. CONCLUSION: CK-MB and HEPC levels were statistically different between confirmed TB cases and non-TB cases. This study yields promising results for the rapid diagnosis of TB disease using a single marker or three biomarkers model.
Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Biomarcadores , Creatina Quinase Forma MB , Diagnóstico Precoce , Gabão , Hepcidinas , Humanos , Curva ROC , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Tuberculose Pulmonar/diagnósticoRESUMO
AIM: The aim of the present study is to compare the performance of 16S rRNA Nanopore sequencing and conventional culture in detecting infectious pathogens in patients with suspected meningitis in a resource-limited setting without extensive bioinformatics expertise. METHODS: DNA was isolated from the cerebrospinal fluid (CSF) of 30 patients with suspected bacterial meningitis. The isolated DNA was subjected to 16S sequencing using MinION™. The data were analysed in real time via the EPI2ME cloud platform. The Nanopore sequencing was done in parallel to routine microbiological diagnostics. RESULTS: Nanopore sequencing detected bacterial pathogens to species level in 13 of 30 (43%) samples. CSF culture showed 40% (12/30) positivity. In 21 of 30 patients (70%) with suspected bacterial meningitis, both methods yielded concordant results. About nine of 30 samples showed discordant results, of these five were false positive and four were false negative. In five of the culture negative results, nanopore sequencing was able to detect pathogen genome, due to the higher sensitivity of the molecular diagnostics. In two other samples, the CSF culture revealed Cryptococcus neoformans and Streptococcus pneumoniae, which were not detected by Nanopore sequencing. Overall, using both the cultures and 16S Nanopore sequencing, positivity rate increased from 40% (12/30) to 57% (17/30). CONCLUSION: Next-generation sequencing could detect pathogens within six hours and could become an important tool for both pathogen screening and surveillance in low- and middle-income countries (LMICs) that do not have direct access to extensive bioinformatics expertise.