Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 48(11): 2344-2353, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36028460

RESUMO

Pancreatic adenocarcinoma is an aggressive malignancy with limited therapeutic treatments available and a 5-y survival less than 10%. Pancreatic cancers have been found to be immunogenically "cold" with a largely immunosuppressive tumor microenvironment. There is emerging evidence that focused ultrasound can induce changes in the tumor microenvironment and have a constructive impact on the effect of immunotherapy. However, the immune cells and timing involved in these effects remain unclear, which is essential to determining how to combine immunotherapy with ultrasound for treatment of pancreatic adenocarcinoma. We used low-intensity focused ultrasound and microbubbles (LoFU + MBs), which can mechanically disrupt cellular membranes and vascular endothelia, to treat subcutaneous pancreatic tumors in C57BL/6 mice. To evaluate the immune cell landscape and expression and/or localization of damage-associated molecular patterns (DAMPs) as a response to ultrasound, we performed flow cytometry and histology on tumors and draining lymph nodes 2 and 15 d post-treatment. We repeated this study on larger tumors and with multiple treatments to determine whether similar or greater effects could be achieved. Two days after treatment, draining lymph nodes exhibited a significant increase in activated antigen presenting cells, such as macrophages, as well as expansion of CD8+ T cells and CD4+ T cells. LoFU + MB treatment caused localized damage and facilitated the translocation of DAMP signals, as reflected by an increase in the cytoplasmic index for high-mobility-group box 1 (HMGB1) at 2 d. Tumors treated with LoFU + MBs exhibited a significant decrease in growth 15 d after treatment, indicating a tumor response that has the potential for additive effects. Our studies indicate that focused ultrasound treatments can cause tumoral damage and changes in macrophages and T cells 2 d post-treatment. The majority of these effects subsided after 15 d with only a single treatment, illustrating the need for additional treatment types and/or combination with immunotherapy. However, when larger tumors were treated, the effects seen at 2 d were diminished, even with an additional treatment. These results provide a working platform for further rational design of focused ultrasound and immunotherapy combinations in poorly immunogenic cancers.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Terapia por Ultrassom , Adenocarcinoma/imunologia , Adenocarcinoma/terapia , Animais , Linfócitos T CD8-Positivos/imunologia , Proteína HMGB1 , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Microambiente Tumoral , Neoplasias Pancreáticas
2.
Cancer Immunol Res ; 8(3): 292-308, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32024640

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is an aggressive malignancy characterized by a paucity of tumor-proximal CD8+ T cells and resistance to immunotherapeutic interventions. Cancer-associated mechanisms that elicit CD8+ T-cell exclusion and resistance to immunotherapy are not well-known. Here, using a Kras- and p53-driven model of PDA, we describe a mechanism of action for the protumorigenic cytokine IL35 through STAT3 activation in CD8+ T cells. Distinct from its action on CD4+ T cells, IL35 signaling in gp130+CD8+ T cells activated the transcription factor STAT3, which antagonized intratumoral infiltration and effector function of CD8+ T cells via suppression of CXCR3, CCR5, and IFNγ expression. Inhibition of STAT3 signaling in tumor-educated CD8+ T cells improved PDA growth control upon adoptive transfer to tumor-bearing mice. We showed that activation of STAT3 in CD8+ T cells was driven by B cell- but not regulatory T cell-specific production of IL35. We also demonstrated that B cell-specific deletion of IL35 facilitated CD8+ T-cell activation independently of effector or regulatory CD4+ T cells and was sufficient to phenocopy therapeutic anti-IL35 blockade in overcoming resistance to anti-PD-1 immunotherapy. Finally, we identified a circulating IL35+ B-cell subset in patients with PDA and demonstrated that the presence of IL35+ cells predicted increased occurrence of phosphorylated (p)Stat3+CXCR3-CD8+ T cells in tumors and inversely correlated with a cytotoxic T-cell signature in patients. Together, these data identified B cell-mediated IL35/gp130/STAT3 signaling as an important direct link to CD8+ T-cell exclusion and immunotherapy resistance in PDA.


Assuntos
Linfócitos B/imunologia , Carcinoma Ductal Pancreático/imunologia , Interleucinas/imunologia , Neoplasias Pancreáticas/imunologia , Fator de Transcrição STAT3/imunologia , Animais , Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Estudos de Casos e Controles , Proliferação de Células/fisiologia , Humanos , Imunoterapia Adotiva/métodos , Interleucinas/genética , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Receptores CCR5/genética , Receptores CCR5/imunologia , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Fator de Transcrição STAT3/genética , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Exp Biol Med (Maywood) ; 241(3): 273-81, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26429201

RESUMO

Opioid growth factor receptor (OGFr) facilitates growth inhibition in the presence of its specific ligand opioid growth factor (OGF), chemically termed [Met(5)]-enkephalin. The function of the OGF-OGFr axis requires the receptor to translocate to the nucleus. However, the mechanism of nuclear export of OGFr is unknown. In this study, endogenous OGFr, as well as exogenously expressed OGFr-EGFP, demonstrated significant nuclear accumulation in response to leptomycin B (LMB), an inhibitor of CRM1-dependent nuclear export, suggesting that OGFr is exported in a CRM1-dependent manner. One consensus sequence for a nuclear export signal (NES) was identified. Mutation of the associated leucines, L217 L220 L223 and L225, to alanine resulted in decreased nuclear accumulation. NES-EGFP responded to LMB, indicating that this sequence is capable of functioning as an export signal in isolation. To determine why the sequence functions differently in isolation than as a full length protein, the localization of subNES was evaluated in the presence and absence of MG132, a potent inhibitor of proteosomal degradation. MG132 had no effect of subNES localization. The role of tandem repeats located at the C-terminus of OGFr was examined for their role in nuclear trafficking. Six of seven tandem repeats were removed to form deltaTR. DeltaTR localized exclusively to the nucleus indicating that the tandem repeats may contribute to the localization of the receptor. Similar to the loss of cellular proliferation activity (i.e. inhibition) recorded with subNES, deltaTR also demonstrated a significant loss of inhibitory activity indicating that the repeats may be integral to receptor function. These experiments reveal that OGFr contains one functional NES, L217 L220 L223 and L225 and can be exported from the nucleus in a CRM1-dependent manner.


Assuntos
Transporte Ativo do Núcleo Celular , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Opioides/metabolismo , Animais , Células COS , Chlorocebus aethiops , Sinais de Exportação Nuclear , Receptores Opioides/genética , Proteína Exportina 1
4.
Int J Mol Med ; 36(1): 289-93, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26005722

RESUMO

The opioid growth factor (OGF)-OGF receptor (OGFr) axis is present and tonically active in animal and human cancer cell lines and tumors. The OGF­OGFr pathway tonically mediates cell replication in cancer, with OGF serving as an autocrine­produced inhibitory pentapeptide. The inhibitory effect of OGF on cancer cell replication requires the binding of OGF to OGFr and its trafficking into the nucleus, where it upregulates inhibitory kinase expression, thus suppressing the cell cycle. OGF has been reported to markedly inhibit the growth of human cancer cells transplanted into nude mice, and to enhance the therapeutic effects of agents, such as paclitaxel and gemcitabine. At the time that this study commenced, there were 13 missense mutations identified in OGFr that had been curated in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Little is known about any mutations identified in OGFr or how mutated OGFr may alter the inhibitory activity of OGF. In this study, two mutations identified in cancer samples, S378I and R444H, were characterized with respect to how they modified OGFr trafficking into the nucleus and changed the functional attributes of DNA synthesis. R444H demonstrated a significant decrease in the nuclear/cytoplasmic ratio, while S378I showed no change. Both mutations demonstrated a loss of response to OGF and the long­acting opioid antagonist, naltrexone (NTX), while only R444H showed a loss of inhibition in the 5­bromo­2'­deoxyuridine (BrdU) assay. These data demonstrate that an intact OGFr is required for a full response to biotherapy with OGF, and that it is important to characterize potential mutations in neoplasia which could affect therapeutic responsiveness.


Assuntos
Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Neoplasias/genética , Receptores Opioides/genética , Animais , Células COS , Linhagem Celular Tumoral , Proliferação de Células/genética , Chlorocebus aethiops , Regulação Neoplásica da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Humanos , Mutação de Sentido Incorreto/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA