Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Genet Metab ; 136(1): 46-64, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339387

RESUMO

Existing phenylalanine hydroxylase (PAH)-deficient mice strains are useful models of untreated or late-treated human phenylketonuria (PKU), as most contemporary therapies can only be initiated after weaning and the pups have already suffered irreversible consequences of chronic hyperphenylalaninemia (HPA) during early brain development. Therefore, we sought to evaluate whether enzyme substitution therapy with pegvaliase initiated near birth and administered repetitively to C57Bl/6-Pahenu2/enu2 mice would prevent HPA-related behavioral and cognitive deficits and form a model for early-treated PKU. The main results of three reported experiments are: 1) lifelong weekly pegvaliase treatment prevented the cognitive deficits associated with HPA in contrast to persisting deficits in mice treated with pegvaliase only as adults. 2) Cognitive deficits reappear in mice treated with weekly pegvaliase from birth but in which pegvaliase is discontinued at 3 months age. 3) Twice weekly pegvaliase injection also prevented cognitive deficits but again cognitive deficits emerged in early-treated animals following discontinuation of pegvaliase treatment during adulthood, particularly in females. In all studies, pegvaliase treatment was associated with complete correction of brain monoamine neurotransmitter content and with improved overall growth of the mice as measured by body weight. Mean total brain weight however remained low in all PAH deficient mice regardless of treatment. Application of enzyme substitution therapy with pegvaliase, initiated near birth and continued into adulthood, to PAH-deficient Pahenu2/enu2 mice models contemporary early-treated human PKU. This model will be useful for exploring the differential pathophysiologic effects of HPA at different developmental stages of the murine brain.


Assuntos
Fenilalanina Hidroxilase , Fenilcetonúrias , Adulto , Animais , Cognição , Dieta , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fenilalanina , Fenilalanina Amônia-Liase , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/tratamento farmacológico , Proteínas Recombinantes
2.
Mol Genet Metab ; 137(1-2): 9-17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35868243

RESUMO

BACKGROUND: Tyrosinemia type 1 (HT1) is a rare metabolic disorder caused by a defect in the tyrosine catabolic pathway. Since HT1 patients are treated with NTBC, outcome improved and life expectancy greatly increased. However extensive neurocognitive and behavioural problems have been described, which might be related to treatment with NTBC, the biochemical changes induced by NTBC, or metabolites accumulating due to the enzymatic defect characterizing the disease. OBJECTIVE: To study the possible pathophysiological mechanisms of brain dysfunction in HT1, we assessed blood and brain LNAA, and brain monoamine neurotransmitter metabolite levels in relation to behavioural and cognitive performance of HT1 mice. DESIGN: C57BL/6 littermates were divided in three different experimental groups: HT1, heterozygous and wild-type mice (n = 10; 5 male). All groups were treated with NTBC and underwent cognitive and behavioural testing. One week after behavioural testing, blood and brain material were collected to measure amino acid profiles and brain monoaminergic neurotransmitter levels. RESULTS: Irrespective of the genetic background, NTBC treatment resulted in a clear increase in brain tyrosine levels, whereas all other brain LNAA levels tended to be lower than their reference values. Despite these changes in blood and brain biochemistry, no significant differences in brain monoamine neurotransmitter (metabolites) were found and all mice showed normal behaviour and learning and memory. CONCLUSION: Despite the biochemical changes, NTBC and genotype of the mice were not associated with poorer behavioural and cognitive function of the mice. Further research involving dietary treatment of FAH-/- are warranted to investigate whether this reveals the cognitive impairments that have been seen in treated HT1 patients.


Assuntos
Nitrobenzoatos , Tirosinemias , Animais , Camundongos , Masculino , Cicloexanonas , Camundongos Endogâmicos C57BL , Tirosinemias/tratamento farmacológico , Tirosinemias/genética , Tirosina/metabolismo
3.
Genes (Basel) ; 15(3)2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38540341

RESUMO

Heterozygous carriers of the glucocerebrosidase 1 (GBA) L444P Gaucher mutation have an increased risk of developing Parkinson's disease (PD). The GBA mutations result in elevated alpha synuclein (aSyn) levels. Heterozygous mice carrying one allele with the L444P mutation knocked-into the mouse gene show increased aSyn levels and are more sensitive to motor deficits following exposure to the neurotoxin (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) MPTP than wild-type mice. Paraquat (PQ), a herbicide, increases PD risk in most studies. Its effects on the brain involve alterations in the gut microbiome. Exposure to dextran sulfate sodium (DSS), a mouse model of colitis, can be used to determine whether gut microbiome alterations are sufficient to induce PD-relevant phenotypes. We rederived the A53T-L444P and A53T mouse lines to assess whether PQ, PQ in combination with radiation exposure (IR), and DSS have differential effects in A53T and A53T-L444P mice and whether these effects are associated with alterations in the gut microbiome. PQ and PQ + IR have differential effects in A53T and A53T-L444P mice. In contrast, effects of DSS are only seen in A53T-L444P mice. Exposure and genotype modulate the relationship between the gut microbiome and behavioral performance. The gut microbiome may be an important mediator of how environmental exposures or genetic mutations yield behavioral and cognitive impacts.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Camundongos , Animais , Paraquat/toxicidade , Sulfato de Dextrana , Doença de Parkinson/genética , Glucosilceramidase/genética , Cognição
4.
Behav Brain Res ; 423: 113767, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35077772

RESUMO

Neurofibromatosis type 1 (NF1) is associated with behavioral alterations and cognitive impairments. There is a genetic interaction between NF1 and the receptor tyrosine kinase Alk. Short-term pharmacological Alk inhibition, with a compound FDA-approved for cancer starting 10 days prior to cognitive testing, was shown to improve cognitive performance of NF1 heterozygous (HET) mice. However, effects of long-term Alk inhibition on behavioral cognitive performance are not known. Therefore, in the study described below we determine the effects of prolonged pharmacological Alk inhibition for 24 weeks on behavioral and cognitive performance of NF1 HET mice. As these studies have the ultimate objective of developing a treatment for humans with neurofibromatosis and acceptable side effects in the context of cancer are not acceptable in the context of long-term treatment of patients with neurofibromatosis, we included additional behavioral tests of anxiety-like and depressive-like behaviors as well. Long-term effects of Alk inhibition had genotype-dependent effects, consistent with a specific interaction between Alk and NF1. Beneficial effects of long-term Alk inhibition in NF1 HET mice included rescue of impairments in object recognition in NF1 HET males and females, and improved cognitive performance of NF1 HET males and females in the water maze test. In contrast, long-term Alk inhibition had detrimental effects in WT mice not seen after short-term treatments. As longer treatments are translationally more relevant for NF1 patients, these data highlight the important to assess long-term effects of drugs, especially of repurposed drugs used originally as part of cancer therapy.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Disfunção Cognitiva/tratamento farmacológico , Neurofibromatose 1/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Neurofibromatose 1/complicações
5.
Oncotarget ; 13: 198-213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35106123

RESUMO

DNA double strand breaks (DSBs) have been highly studied in the context of cancers, as DSBs can lead to apoptosis or tumorigenesis. Several pharmaceuticals are widely used to target DSBs during cancer therapy. Amifostine (WR-2721) and etoposide are two commonly used drugs: amifostine reduces DSBs, whereas etoposide increases DSBs. Recently, a novel role for DSBs in immediate early gene expression, learning, and memory has been suggested. Neither amifostine nor etoposide have been assessed for their effects on learning and memory without confounding factors. Moreover, sex-dependent effects of these drugs have not been reported. We administered amifostine or etoposide to 3-4-month-old male and female C57Bl/6J mice before or after training in fear conditioning and assessed learning, memory, and immediate early genes. We observed sex-dependent baseline and drug-induced differences, with females expressing higher cFos and FosB levels than males. These were affected by both amifostine and etoposide. Post-training injections of amifostine affected long-term contextual fear memory; etoposide affected contextual and cued fear memory. These data support the hypothesis that DSBs contribute to learning and memory, and that these could play a part in cognitive side effects during common treatment regimens. The sex-dependent effects also highlight an important factor when considering treatment plans.


Assuntos
Amifostina , Neoplasias , Animais , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Etoposídeo/farmacologia , Feminino , Genes Precoces , Masculino , Memória de Longo Prazo , Camundongos , Preparações Farmacêuticas
6.
Front Aging Neurosci ; 14: 767558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299942

RESUMO

Mice expressing human amyloid precursor protein (APP) containing the dominant Swedish and Iberian mutations (AppNL-F ) or also Arctic mutation (AppNL-G-F ) show neuropathology and hippocampus-dependent cognitive impairments pertinent to Alzheimer's disease (AD) in mouse models at 18 and 6 months of age, respectively. Apolipoprotein E, involved in cholesterol metabolism, plays an important role in maintaining the brain. There are three human apolipoprotein E isoforms: E2, E3, and E4. Compared to E3, E4 increases while E2 protects against AD risk. At 6 months of age, prior to the onset of plaque pathology, E3, but not E4, protected against hAPP/Aß-induced impairments in spatial memory retention in the Morris water maze. However, these earlier studies were limited as hapoE was not expressed outside the brain and E3 or E4 was not expressed under control of an apoE promotor, E2 was often not included, hAPP was transgenically overexpressed and both mouse and hAPP were present. Therefore, to determine whether apoE has isoform-dependent effects on hAPP/Aß-induced behavioral alterations and cognitive impairments in adult female and male mice at 6 and 18 months of age, we crossed AppNL-G-F and AppNL-F mice with E2, E3, and E4 mice. To distinguish whether genotype differences seen at either time point were due to main effects of hAPP, hapoE, or hAPP × hapoE genetic interactions, we also behavioral and cognitively tested E2, E3, and E4 female and male mice at 6 and 18 months of age. We also compared behavioral and cognitive performance of 18-month-old AppNL-G-F and AppNL-F female and male mice on a murine apoE background along with that of age-and sex-matched C57BL/6J wild-type mice. For many behavioral measures at both time points there were APP × APOE interactions, supporting that apoE has isoform-dependent effects on hAPP/Aß-induced behavioral and cognitive performance. NL-G-F/E3, but not NL-G-F/E2, mice had lower cortical insoluble Aß42 levels than NL-G-F/E4 mice. NL-F/E3 and NL-F/E2 mice had lower cortical insoluble Aß42 levels than NL-F/E4 mice. These results demonstrate that there are apoE isoform-dependent effects on hAPP/Aß-induced behavioral alterations and cognitive impairments and cortical insoluble Aß42 levels in mouse models containing only human APP and apoE.

7.
Brain Res ; 1769: 147594, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34339711

RESUMO

Neurofibromatosis type 1 (NF1), a genetically determined neurodevelopmental disorder and tumor syndrome, is associated with cognitive impairments, including in executive function and sleep-related problems. Consistent with the human data, NF1 heterozygous (Het) mice show impaired spatial learning and memory in the water maze and extinction of contextual fear memory. It is not clear whether neurological phenotypes might depend on the parental carrier. In this study, we compared the behavioral and cognitive performance of NF1 Het and wild-type litter mates with either the father (PC) or the mother (MC) as the NF1 carrier on a F1 C57BL/66/129SvJ background. The behavioral and cognitive phenotypes and responsiveness to Alk inhibition in heterozygous NF1 offspring depended on whether the parental carrier was maternal or paternal. Alk inhibition (20 mg/kg) increased activity levels during the dark period in NF1 Het PC, but not MC, mice. In the water maze, NF1 Het PC, but not MC, mice showed reduced cognitive flexibility and impaired ability to locate the third hidden platform location, which was improved by Alk inhibition (3.6 mg/kg). Consistent with reduced cognitive flexibility, WT, but not NF1, mice showed better performance in the third than second water maze probe trial. Finally, Alk inhibition (10 mg/kg) increased baseline activity of NF1 MC, but not PC, mice during the fear conditioning test. Thus, the effective dose depends on the behavioral test and genotype but indicates that in NF1 patients cognitive flexibility might be particularly sensitive to Alk inhibition.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Heterozigoto , Neurofibromatose 1/tratamento farmacológico , Neurofibromatose 1/psicologia , Neurofibromina 1/genética , Quinase do Linfoma Anaplásico/genética , Animais , Antineoplásicos/farmacologia , Comportamento Animal , Carbazóis/farmacologia , Cognição , Disfunção Cognitiva , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Medo/psicologia , Feminino , Genótipo , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Neurofibromatose 1/genética , Pais , Piperidinas/farmacologia
8.
Environ Health Perspect ; 129(5): 57009, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34009016

RESUMO

BACKGROUND: Exposure to secondhand smoke (SHS) is a risk factor for developing sporadic forms of sporadic dementia. A human tau (htau) mouse model is available that exhibits age-dependent tau dysregulation, neurofibrillary tangles, neuronal loss, neuroinflammation, and oxidative stress starting at an early age (3-4 months) and in which tau dysregulation and neuronal loss correlate with synaptic dysfunction and cognitive decline. OBJECTIVE: The goal of this study was to assess the effects of chronic SHS exposure (10 months' exposure to ∼30 mg/m3) on behavioral and cognitive function, metabolism, and neuropathology in mice. METHODS: Wild-type (WT) and htau female and male mice were exposed to SHS (90% side stream, 10% main stream) using the SCIREQ® inExpose™ system or air control for 168 min per day, for 312 d, 7 d per week. The exposures continued during the days of behavioral and cognitive testing. In addition to behavioral and cognitive performance and neuropathology, the lungs of mice were examined for pathology and alterations in gene expression. RESULTS: Mice exposed to chronic SHS exposure showed the following genotype-dependent responses: a) lower body weights in WT, but not htau, mice; b) less spontaneous alternation in WT, but not htau, mice in the Y maze; c) faster swim speeds of WT, but not htau, mice in the water maze; d) lower activity levels of WT and htau mice in the open field; e) lower expression of brain PHF1, TTCM1, IGF1ß, and HSP90 protein levels in WT male, but not female, mice; and f) more profound effects on hippocampal metabolic pathways in WT male than female mice and more profound effects in WT than htau mice. DISCUSSION: The brain of WT mice, in particular WT male mice, might be especially susceptible to the effects of chronic SHS exposure. In WT males, independent pathways involving ascorbate, flavin adenine dinucleotide, or palmitoleic acid might contribute to the hippocampal injury following chronic SHS exposure. https://doi.org/10.1289/EHP8428.


Assuntos
Exposição Ambiental , Hipocampo , Poluição por Fumaça de Tabaco , Animais , Cognição , Exposição Ambiental/efeitos adversos , Exposição Ambiental/estatística & dados numéricos , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Redes e Vias Metabólicas , Camundongos , Tauopatias , Poluição por Fumaça de Tabaco/efeitos adversos , Poluição por Fumaça de Tabaco/estatística & dados numéricos , Proteínas tau
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA