Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Physiol Cell Physiol ; 308(8): C673-83, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25652452

RESUMO

Endothelial nitric oxide (NO) synthase (eNOS) is the predominant isoform that generates NO in the blood vessels. Many different regulators, including heat shock protein 90 (Hsp90), govern eNOS function. Hsp90-dependent phosphorylation of eNOS is a critical event that determines eNOS activity. In our earlier study we demonstrated an inhibitor-κB kinase-ß (IKKß)-Hsp90 interaction in a high-glucose environment. In the present study we further define the putative binding domain of IKKß on Hsp90. Interestingly, IKKß binds to the middle domain of Hsp90, which has been shown to interact with eNOS to stimulate its activity. This new finding suggests a tighter regulation of eNOS activity than was previously assumed. Furthermore, addition of purified recombinant IKKß to the eNOS-Hsp90 complex reduces the eNOS-Hsp90 interaction and eNOS activity, indicating a competition for Hsp90 between eNOS and IKKß. The pathophysiological relevance of the IKKß-Hsp90 interaction has also been demonstrated using in vitro vascular endothelial growth factor-mediated signaling and an Ins2(Akita) in vivo model. Our study further defines the preferential involvement of α- vs. ß-isoforms of Hsp90 in the IKKß-eNOS-Hsp90 interaction, even though both Hsp90α and Hsp90ß stimulate NO production. These studies not only reinforce the significance of maintaining a homeostatic balance of eNOS and IKKß within the cell system that regulates NO production, but they also confirm that the IKKß-Hsp90 interaction is favored in a high-glucose environment, leading to impairment of the eNOS-Hsp90 interaction, which contributes to endothelial dysfunction and vascular complications in diabetes.


Assuntos
Células Endoteliais/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Quinase I-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Aorta/citologia , Sítios de Ligação , Bovinos , Células Cultivadas , Diabetes Mellitus/patologia , Células Endoteliais/enzimologia , Glucose/metabolismo , Proteínas de Choque Térmico HSP90/genética , Humanos , Quinase I-kappa B/genética , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Óxido Nítrico/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Lab Invest ; 95(10): 1092-104, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26214584

RESUMO

The balance of nitric oxide (NO) versus superoxide generation has a major role in the initiation and progression of endothelial dysfunction. Under conditions of high glucose, endothelial nitric oxide synthase (eNOS) functions as a chief source of superoxide rather than NO. In order to improve NO bioavailability within the vessel wall in type-1 diabetes, we investigated treatment strategies that improve eNOS phosphorylation and NO-dependent vasorelaxation. We evaluated methods to increase the eNOS activity by (1) feeding Ins2(Akita) spontaneously diabetic (type-1) mice with l-arginine in the presence of sepiapterin, a precursor of tetrahydrobiopterin; (2) preventing eNOS/NO deregulation by the inclusion of inhibitor kappa B kinase beta (IKKß) inhibitor, salsalate, in the diet regimen in combination with l-arginine and sepiapterin; and (3) independently increasing eNOS expression to improve eNOS activity and associated NO production through generating Ins2(Akita) diabetic mice that overexpress human eNOS predominantly in vascular endothelial cells. Our results clearly demonstrated that diet supplementation with l-arginine, sepiapterin along with salsalate improved phosphorylation of eNOS and enhanced vasorelaxation of thoracic/abdominal aorta in type-1 diabetic mice. More interestingly, despite the overexpression of eNOS, the in-house generated transgenic eNOS-GFP (TgeNOS-GFP)-Ins2(Akita) cross mice showed an unanticipated effect of reduced eNOS phosphorylation and enhanced superoxide production. Our results demonstrate that enhancement of endogenous eNOS activity by nutritional modulation is more beneficial than increasing the endogenous expression of eNOS by gene therapy modalities.


Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Suplementos Nutricionais , Endotélio Vascular/metabolismo , Hipoglicemiantes/uso terapêutico , Óxido Nítrico Sintase Tipo III/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Processamento de Proteína Pós-Traducional , Animais , Aorta/citologia , Aorta/metabolismo , Aorta/fisiopatologia , Arginina/metabolismo , Arginina/uso terapêutico , Bovinos , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatologia , Endotélio Vascular/citologia , Endotélio Vascular/fisiopatologia , Feminino , Heterozigoto , Humanos , Hipoglicemiantes/metabolismo , Insulina/genética , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/genética , Fosforilação , Inibidores de Proteínas Quinases/metabolismo , Pterinas/metabolismo , Pterinas/uso terapêutico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Salicilatos/metabolismo , Salicilatos/uso terapêutico , Desmame
3.
Mol Microbiol ; 93(3): 568-81, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24948331

RESUMO

Community-acquired respiratory distress syndrome (CARDS) toxin from Mycoplasma pneumoniae is a 591-amino-acid virulence factor with ADP-ribosyltransferase (ADPRT) and vacuolating activities. It is expressed at low levels during in vitro growth and at high levels during colonization of the lung. Exposure of experimental animals to purified recombinant CARDS toxin alone is sufficient to recapitulate the cytopathology and inflammatory responses associated with M. pneumoniae infection in humans and animals. Here, by molecular modelling, serial truncations and site-directed mutagenesis, we show that the N-terminal region is essential for ADP-ribosylating activity. Also, by systematic truncation and limited proteolysis experiments we identified a portion of the C-terminal region that mediates toxin binding to mammalian cell surfaces and subsequent internalization. In addition, the C-terminal region alone induces vacuolization in a manner similar to full-length toxin. Together, these data suggest that CARDS toxin has a unique architecture with functionally separable N-terminal and C-terminal domains.


Assuntos
ADP Ribose Transferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Mycoplasma pneumoniae , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , Motivos de Aminoácidos , Animais , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Células HeLa , Humanos , Modelos Moleculares , NAD/metabolismo , Estrutura Terciária de Proteína , Proteólise , Fatores de Virulência/química , Fatores de Virulência/metabolismo
4.
J Bacteriol ; 192(19): 4876-84, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20639320

RESUMO

In this study, we identified and characterized the enzymatic properties of MG_186, a calcium-dependent Mycoplasma genitalium nuclease. MG_186 displays the hallmarks of nucleases, as indicated by its amino acid sequence similarity to other nucleases. We cloned, UGA corrected, expressed, purified, and demonstrated that recombinant MG_186 (rMG_186) exhibits nuclease activity similar to that of typical sugar-nonspecific endonucleases and exonucleases. Biochemical characterization indicated that Ca2+ alone enhances its activity, which was inhibited by divalent cations, such as Zn2+ and Mn2+. Chelating agents EGTA and EDTA also inhibited nuclease activity. Mycoplasma membrane fractionation and Triton X-114 phase separation showed that MG_186 was a membrane-associated lipoprotein, and electron microscopy revealed its surface membrane location. Incubation of purified human endometrial cell nuclei with rMG_186 resulted in DNA degradation and morphological changes typical of apoptosis. Further, immunofluorescence analysis of rMG_186-treated nuclei indicated that morphological changes were linked to the disintegration of lamin and the internalization of rMG_186. Since M. genitalium has the capacity to invade eukaryotic cells and localize to the perinuclear and nuclear region of parasitized target cells, MG_186 has the potential to provide M. genitalium, which possesses the smallest genome of any self-replicating cell, with the ability to degrade host nucleic acids both as a source of nucleotide precursors for growth and for pathogenic purposes.


Assuntos
Proteínas de Bactérias/metabolismo , Endonucleases/metabolismo , Mycoplasma genitalium/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Linhagem Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Endonucleases/química , Endonucleases/genética , Endonucleases/farmacologia , Humanos , Immunoblotting , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mycoplasma genitalium/genética , Reação em Cadeia da Polimerase
5.
FASEB J ; 20(1): 106-8, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16246867

RESUMO

Tracking stem cell localization, survival, differentiation, and proliferation after transplantation in living subjects is essential for understanding stem cell biology and physiology. In this study, we investigated the long-term stability of reporter gene expression in an embryonic rat cardiomyoblast cell line and the role of epigenetic modulation on reversing reporter gene silencing. Cells were stably transfected with plasmids carrying cytomegalovirus promoter driving firefly luciferase reporter gene (CMV-Fluc) and passaged repeatedly for 3-8 months. Within the highest expressor clone, the firefly luciferase activity decreased progressively from passage 1 (843+/-28) to passage 20 (250+/-10) to passage 40 (44+/-3) to passage 60 (3+/-1 RLU/microg; P<0.05 vs. passage 1). Firefly luciferase activity was maximally rescued by treatment with 5-azacytidine (DNA methyltransferase inhibitor) compared with trichostatin A (histone deacetylase inhibitor) and retinoic acid (transcriptional activator; P<0.05). Increasing dosages of 5-azacytidine treatment led to higher levels of firefly luciferase mRNA (RT-PCR) and protein (Western blots) and inversely lower levels of methylation in the CMV promoter (DNA nucleotide sequence). These in vitro results were extended to in vivo bioluminescence imaging (BLI) of cell transplant in living animals. Cells treated with 5-azacytidine were monitored for 2 wk compared with 1 wk for untreated cells (P<0.05). These findings should have important implications for reporter gene-based imaging of stem cell transplantation.


Assuntos
Epigênese Genética/genética , Inativação Gênica , Genes Reporter/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Azacitidina/farmacologia , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/metabolismo , Inativação Gênica/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Luciferases de Vaga-Lume/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos , Tretinoína/farmacologia
6.
PLoS One ; 8(5): e62706, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667510

RESUMO

Bacterial toxins possess specific mechanisms of binding and uptake by mammalian cells. Mycoplasma pneumoniae CARDS (Community Acquired Respiratory Distress Syndrome) toxin is a 68 kDa protein, which demonstrates high binding affinity to human surfactant protein-A and exhibits specific biological activities including mono-ADP ribosylation and vacuolization. These properties lead to inflammatory processes in the airway and a range of cytopathologies including ciliostasis, loss of tissue integrity and injury, and cell death. However, the process by which CARDS toxin enters target cells is unknown. In this study, we show that CARDS toxin binds to mammalian cell surfaces and is internalized rapidly in a dose and time-dependent manner using a clathrin-mediated pathway, as indicated by inhibition of toxin internalization by monodansylcadaverine but not by methyl-ß-cyclodextrin or filipin. Furthermore, the internalization of CARDS toxin was markedly inhibited in clathrin-depleted cells.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clatrina/metabolismo , Endocitose , Pneumonia por Mycoplasma , Linhagem Celular , Humanos , Proteínas Recombinantes/metabolismo , Fatores de Tempo
7.
J Inorg Biochem ; 127: 175-81, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23692703

RESUMO

Three new complexes of Cu(II) with 7-azaindole have been synthesized and characterized, a dicopper compound, [Cu(C7H5N2)2(H2O)]2·2CH3CN, 1, and two heptacopper compounds [Cu7(C7H5N2)6(µ3-OH)6(µ2-H2O)2(µ2-CH3OH)4](CH3COO)2·2C7H8·6CH3OH, 2, and [Cu7(C7H5N2)5(CH3COO)(µ3-OH)6(µ2-H2O)4(µ2-CH3OH)2](CH3COO)2, 4. The structure of 2 is monoclinic and it crystallizes in the P21/c space group: a=13.475(4)Å; b=12.945(4)Å; c=23.392(7)Å; ß=91.232(6)°. It contains a unique Cu7O12 core in which a central Cu(II) is situated at an inversion center and is bonded to 6 other Cu(II) ions via bridging oxygen atoms from OH(-), H2O, and CH3OH groups. Anionic 7-azaindole ligands bridge between adjacent outer Cu(II) ions and all Cu(II) ions have distorted octahedral coordination geometries. Variable temperature magnetic susceptibility measurements revealed the presence of antiferromagnetic exchange interactions between Cu(II) ions which leads to an S=5/2 ground state at 1.8K. Cytotoxicity and cell proliferation activities of the Cu compounds using human tongue squamous cell carcinoma and normal cells revealed that the compounds stimulated proliferation in both types of cells.


Assuntos
Complexos de Coordenação/química , Cobre/química , Indóis/química , Magnetismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Humanos , Indóis/farmacologia , Ligantes , Modelos Moleculares , Estrutura Molecular , Padrões de Referência
8.
Microbiology (Reading) ; 154(Pt 10): 3033-3041, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18832309

RESUMO

Mycoplasma genitalium (Mg) is a mollicute that causes a range of human urogenital infections. A hallmark of these bacteria is their ability to establish chronic infections that can persist despite completion of appropriate antibiotic therapies and intact and functional immune systems. Intimate adherence and surface colonization of mycoplasmas to host cells are important pathogenic features. However, their facultative intracellular nature is poorly understood, partly due to difficulties in developing and standardizing cellular interaction model systems. Here, we characterize growth and invasion properties of two Mg strains (G37 and 1019V). Mg G37 is a high-passage laboratory strain, while Mg 1019V is a low-passage isolate recovered from the cervix. The two strains diverge partially in gene sequences for adherence-related proteins and exhibit subtle variations in their axenic growth. However, with both strains and consistent with our previous studies, a subset of adherent Mg organisms invade host cells and exhibit perinuclear targeting. Remarkably, intranuclear localization of Mg proteins is observed, which occurred as early as 30 min after infection. Mg strains deficient in adherence were markedly reduced in their ability to invade and associate with perinuclear and nuclear sites.


Assuntos
Aderência Bacteriana , Núcleo Celular/microbiologia , Interações Hospedeiro-Patógeno , Infecções por Mycoplasma/microbiologia , Mycoplasma genitalium/crescimento & desenvolvimento , Análise de Variância , Colo do Útero/microbiologia , DNA Bacteriano/genética , Feminino , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Mycoplasma genitalium/genética , Reação em Cadeia da Polimerase
9.
J Mol Cell Cardiol ; 43(1): 18-26, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17467733

RESUMO

The Cre-loxP system has been routinely used for conditional activation and deletion of gene expression. However, the spatiotemporal manner of these events in the heart has not yet been defined by in vivo imaging. Adenovirus (1 x 10(9 )pfu) carrying the silent positron emission tomography (PET) reporter gene, herpes simplex virus type 1 thymidine kinase (HSV1-tk), was injected into the left ventricular wall of male transgenic mice (n=15) or FVB controls (n=8). Transgenic mice expressed Cre recombinase driven by a cardiac-specific alpha-myosin heavy chain (alpha-MHC) promoter. Following injection of the 9-[4-fluoro-3-(hydroxymethyl)butyl]guanine ([18F]-FHBG; 137+/-25 microCi) reporter probe, microPET imaging was used to assess the expression of HSV1-tk reporter gene in the myocardium. Two days following adenoviral injection, cardiac HSV1-tk gene activation resulted in tracer uptake of 3.20+/-0.51% ID/g for alpha-MHC-Cre and 0.05+/-0.02%ID/g for control mice (P<0.01). The in vivo results were confirmed by RT-PCR and Western blot analysis. Similar transfections were evaluated in both cardiac-specific and non-cardiac-specific cell lines. Enzyme activity showed a robust correlation (r2=0.82) between in vivo molecular imaging technique and traditional in vitro enzyme assays. With further development and validation, PET imaging will likely play an important role in the noninvasive, repetitive, and quantitative measurement of conditional gene activation in the future.


Assuntos
Regulação da Expressão Gênica , Coração/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Miosinas Ventriculares/metabolismo , Animais , Animais Geneticamente Modificados , Integrases/metabolismo , Masculino , Camundongos , Regiões Promotoras Genéticas , Radiografia , Ratos , Proteínas Recombinantes/metabolismo , Ativação Transcricional , Miosinas Ventriculares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA