Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Cell Sci ; 132(1)2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30510112

RESUMO

Salmonella Typhimurium is an intracellular pathogen that causes gastroenteritis in humans. Aided by a battery of effector proteins, S. Typhimurium resides intracellularly in a specialized vesicle, called the Salmonella-containing vacuole (SCV) that utilizes the host endocytic vesicular transport pathway (VTP). Here, we probed the possible role of SUMOylation, a post-translation modification pathway, in SCV biology. Proteome analysis by complex mass-spectrometry (MS/MS) revealed a dramatically altered SUMO-proteome (SUMOylome) in S. Typhimurium-infected cells. RAB7, a component of VTP, was key among several crucial proteins identified in our study. Detailed MS/MS assays, in vitro SUMOylation assays and structural docking analysis revealed SUMOylation of RAB7 (RAB7A) specifically at lysine 175. A SUMOylation-deficient RAB7 mutant (RAB7K175R) displayed longer half-life, was beneficial to SCV dynamics and functionally deficient. Collectively, the data revealed that RAB7 SUMOylation blockade by S. Typhimurium ensures availability of long-lived but functionally compromised RAB7, which was beneficial to the pathogen. Overall, this SUMOylation-dependent switch of RAB7 controlled by S. Typhimurium is an unexpected mode of VTP pathway regulation, and unveils a mechanism of broad interest well beyond Salmonella-host crosstalk. This article has an associated First Person interview with the first author of the paper.


Assuntos
Vesículas Citoplasmáticas/patologia , Células Epiteliais/microbiologia , Mucosa Intestinal/microbiologia , Infecções por Salmonella/patologia , Salmonella typhimurium/patogenicidade , Sumoilação , Proteínas rab de Ligação ao GTP/metabolismo , Células Cultivadas , Vesículas Citoplasmáticas/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Interações Hospedeiro-Patógeno , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/crescimento & desenvolvimento , Proteínas rab de Ligação ao GTP/química , proteínas de unión al GTP Rab7
2.
J Struct Biol ; 211(3): 107571, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32653644

RESUMO

Adhesion to cell surfaces is an essential and early prerequisite for successful host colonization by bacteria, and in most instances involves the specificities of various adhesins. Among bacterial Gram-positives, some genera and species mediate attachment to host cells by using long non-flagellar appendages called sortase-dependent pili. A case in point is the beneficial Lactobacillus rhamnosus GG gut-adapted strain that produces the so-called SpaCBA pilus, a structure noted for its promiscuous binding to intestinal mucus and collagen. Structurally, SpaCBA pili are heteropolymers of three different pilin-protein subunits, each with its own location and function in the pilus: backbone SpaA for length, basal SpaB for anchoring, and tip SpaC for adhesion. Previously, we solved the SpaA tertiary structure by X-ray crystallography and also reported on the crystallization of SpaB and SpaC. Here, we reveal the full-length high-resolution (1.9 Å) crystal structure of SpaC, a first for a sortase-dependent pilus-bearing commensal. The SpaC structure, unlike the representative four-domain architecture of other Gram-positive tip pilins, espouses an atypically longer five-domain arrangement that includes N-terminal 'binding' and C-terminal 'stalk' regions of two and three domains, respectively. With the prospect of establishing new mechanistic insights, we provide a structural basis for the multi-substrate binding nature of SpaC, as well as a structural model that reconciles its exclusive localization at the SpaCBA pilus tip.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/química , Lacticaseibacillus rhamnosus/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Colágeno/metabolismo , Cristalografia por Raios X , Fímbrias Bacterianas/metabolismo , Lacticaseibacillus rhamnosus/citologia , Proteínas de Membrana/genética , Microscopia de Força Atômica , Microscopia Imunoeletrônica , Modelos Moleculares , Simulação de Acoplamento Molecular , Domínios Proteicos
3.
J Struct Biol ; 207(1): 74-84, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026587

RESUMO

For some Gram-positive genera and species, the long-extended and adhesive sortase-dependent pilus plays an essential role during host colonization, biofilm formation, and immune modulation. Lactobacillus rhamnosus GG is a gut-adapted commensal strain that harbors the operonic genes for the SpaCBA and SpaFED pili, both being comprised of three different protein subunits termed the backbone, tip, and basal pilins. Crystal structures of the backbone pilins (SpaA and SpaD) have recently been solved, and here we describe the high-resolution (1.5 Å) structural determination of the SpaE basal pilin. SpaE consists of two immunoglobulin-like CnaB domains, with each displaying a spontaneously formed internal isopeptide bond, though apparently slow forming in the N-terminal domain. Remarkably, SpaE contains an atypically lengthy unstructured C-terminal tail, along with an YPKN pilin motif peptide, which is normally reserved for backbone subunits. Based on our analysis of the crystal structure data, we provide a molecular model for the basal positioning of the SpaE pilin within the SpaFED pilus.


Assuntos
Proteínas de Bactérias/química , Fímbrias Bacterianas/química , Lacticaseibacillus rhamnosus/química , Motivos de Aminoácidos , Cristalografia por Raios X , Proteínas de Fímbrias/química , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Modelos Moleculares
4.
IUBMB Life ; 67(7): 533-43, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26178080

RESUMO

Pilins or fimbrilins are a class of proteins found in bacterial surface pilus, a hair-like surface appendage. Both the Gram-negative and -positive bacteria produce pilins to assemble pili on their cell-surface for different purposes including adherence, twitching motility, conjugation, immunomodulation, biofilm formation, and electron transfer. Immunogenic properties of the pilins make them attractive vaccine candidates. The polymerized pilins play a key role in the initiation of host adhesion, which is a critical step for bacterial colonization and infection. Because of their key role in adhesion and exposure on the cell surface, targeting the pilins-mediated adhesion (anti-adhesion therapy) is also seen as a promising alternative approach for preventing and treating bacterial infections, one that may overcome their ever-increasing repertoires of resistance mechanisms. Individual pilins interact with each other non-covalently to assemble the pilus fiber with the help of associated proteins like chaperones and Usher in Gram-negative bacteria. In contrast, the pilins in Gram-positive bacteria often connect with each other covalently, with the help of sortases. Certain unique structural features present on the pilins distinguish them from one another across different bacterial strains, and these dictate their cellular targets and functions. While the structure of pilins has been extensively studied in Gram-negative pathogenic bacteria, the pilins in Gram-positive pathogenic bacteria have been in only during the last decade. Recently, the discovery of pilins in non-pathogenic bacteria, such as Lactobacillus rhamnosus GG, has received great attention, though traditionally the attention was on pathogenic bacteria. This review summarizes and discusses the current structural knowledge of pilins in Gram-positive bacteria with emphasis on those pilins which are sortase substrates.


Assuntos
Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Bactérias Gram-Positivas/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência Conservada , Fímbrias Bacterianas/química , Bactérias Gram-Positivas/metabolismo , Bactérias Gram-Positivas/patogenicidade , Estrutura Terciária de Proteína
5.
J Biol Chem ; 288(41): 29440-52, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23970550

RESUMO

Staphylococcus epidermidis, a commensal of humans, secretes Esp protease to prevent Staphylococcus aureus biofilm formation and colonization. Blocking S. aureus colonization may reduce the incidence of invasive infectious diseases; however, the mechanism whereby Esp disrupts biofilms is unknown. We show here that Esp cleaves autolysin (Atl)-derived murein hydrolases and prevents staphylococcal release of DNA, which serves as extracellular matrix in biofilms. The three-dimensional structure of Esp was revealed by x-ray crystallography and shown to be highly similar to that of S. aureus V8 (SspA). Both atl and sspA are necessary for biofilm formation, and purified SspA cleaves Atl-derived murein hydrolases. Thus, S. aureus biofilms are formed via the controlled secretion and proteolysis of autolysin, and this developmental program appears to be perturbed by the Esp protease of S. epidermidis.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Serina Proteases/metabolismo , Staphylococcus aureus/fisiologia , Antibiose/fisiologia , Proteínas de Bactérias/química , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Modelos Moleculares , N-Acetil-Muramil-L-Alanina Amidase/genética , Cavidade Nasal/microbiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Serina Proteases/química , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus epidermidis/enzimologia , Staphylococcus epidermidis/fisiologia , Especificidade por Substrato
6.
Acta Crystallogr D Struct Biol ; 80(Pt 7): 474-492, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38935340

RESUMO

Sortase-dependent pili are long surface appendages that mediate attachment, colonization and biofilm formation in certain genera and species of Gram-positive bacteria. Ligilactobacillus ruminis is an autochthonous gut commensal that relies on sortase-dependent LrpCBA pili for host adherence and persistence. X-ray crystal structure snapshots of the backbone pilin LrpA were captured in two atypical bent conformations leading to a zigzag morphology in the LrpCBA pilus structure. Small-angle X-ray scattering and structural analysis revealed that LrpA also adopts the typical linear conformation, resulting in an elongated pilus morphology. Various conformational analyses and biophysical experiments helped to demonstrate that a hinge region located at the end of the flexible N-terminal domain of LrpA facilitates a new closure-and-twist motion for assembling dynamic pili during the assembly process and host attachment. Further, the incongruent combination of flexible domain-driven conformational dynamics and rigid isopeptide bond-driven stability observed in the LrpCBA pilus might also extend to the sortase-dependent pili of other bacteria colonizing a host.


Assuntos
Proteínas de Fímbrias , Fímbrias Bacterianas , Fímbrias Bacterianas/química , Cristalografia por Raios X , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Modelos Moleculares , Domínios Proteicos , Bacillaceae , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Conformação Proteica
7.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 1073-89, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23695252

RESUMO

The crystal structure of a 75 kDa central fragment of GBS104, a tip pilin from the 2063V/R strain of Streptococcus agalactiae (group B streptococcus; GBS), is reported. In addition, a homology model of the remaining two domains of GBS104 was built and a model of full-length GBS104 was generated by combining the homology model (the N1 and N4 domains) and the crystal structure of the 75 kDa fragment (the N2 and N3 domains). This rod-shaped GBS104 model is constructed of three IgG-like domains (the N1, N2 and N4 domains) and one vWFA-like domain (the N3 domain). The N1 and N2 domains of GBS104 are assembled with distinct and remote segments contributed by the N- and C-termini. The metal-binding site in the N3 domain of GBS104 is in the closed/low-affinity conformation. Interestingly, this domain hosts two long arms that project away from the metal-binding site. Using site-directed mutagenesis, two cysteine residues that lock the N3 domain of GBS104 into the open/high-affinity conformation were introduced. Both wild-type and disulfide-locked recombinant proteins were tested for binding to extracellular matrix proteins such as collagen, fibronectin, fibrinogen and laminin, and an increase in fibronectin binding affinity was identified for the disulfide-locked N3 domain, suggesting that induced conformational changes may play a possible role in receptor binding.


Assuntos
Proteínas de Fímbrias/química , Streptococcus agalactiae/química , Sítios de Ligação , Proteínas da Matriz Extracelular/fisiologia , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/fisiologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Streptococcus agalactiae/genética , Streptococcus agalactiae/fisiologia , Difração de Raios X
8.
Artigo em Inglês | MEDLINE | ID: mdl-24100577

RESUMO

Lactobacillus rhamnosus GG, a widely used Gram-positive probiotic strain, is clinically well known for its perceived health-promoting effects. It has recently been shown to display proteinaceous pilus fibres (called SpaCBA) on its cell surface. Structurally, SpaCBA pili possess a characteristic three-pilin polymerized architecture, with repeating SpaA major pilins that form the backbone and two types of minor subunits (SpaB and SpaC). In this study, recombinant SpaA protein was purified, characterized and crystallized. The crystals diffracted to a resolution of 2.0 Šand belonged to space group C2, with unit-cell parameters a=227.9, b=63.2, c=104.3 Å, ß=95.1°.


Assuntos
Proteínas de Fímbrias/química , Lacticaseibacillus rhamnosus/metabolismo , Probióticos/metabolismo , Subunidades Proteicas/química , Cristalização , Cristalografia por Raios X , Proteínas de Fímbrias/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
9.
Int J Biol Macromol ; 243: 125183, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37276901

RESUMO

Dental plaque is a complex microbial biofilm community of many species and a major cause of oral infections and infectious endocarditis. Plaque development begins when primary colonizers attach to oral tissues and undergo coaggregation. Primary colonizers facilitate cellular attachment and inter-bacterial interactions through sortase-dependent pili (or fimbriae) extending out from their cell surface. Consequently, the sortase enzyme is viewed as a potential drug target for controlling biofilm formation and avoiding infection. Streptococcus sanguinis is a primary colonizing bacterium whose pili consist of three different pilin subunits that are assembled together by the pilus-specific (C-type) SsaSrtC sortase. Here, we report on the crystal structure determination of the recombinant wild-type and active-site mutant forms of SsaSrtC. Interestingly, the SsaSrtC structure exhibits an open-lid conformation, although a conserved DPX motif is lacking in the lid. Based on molecular docking and structural analysis, we identified the substrate-binding residues essential for pilin recognition and pilus assembly. We also demonstrated that while recombinant SsaSrtC is enzymatically active toward the five-residue LPNTG sorting motif peptide of the pilins, this activity is significantly reduced by the presence of zinc. We further showed that rutin and α-crocin are potential candidate inhibitors of the SsaSrtC sortase via structure-based virtual screening and inhibition assays. The structural knowledge gained from our study will provide the means to develop new approaches that target pilus-mediated attachment, thereby preventing oral biofilm growth and infection.


Assuntos
Aminoaciltransferases , Proteínas de Fímbrias , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Proteínas de Bactérias/química , Streptococcus sanguis/metabolismo , Simulação de Acoplamento Molecular , Aminoaciltransferases/química
10.
Mol Microbiol ; 81(5): 1205-20, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21696465

RESUMO

By combining X-ray crystallography and modelling, we describe here the atomic structure of distinct adhesive moieties of FimA, the shaft fimbrillin of Actinomyces type 2 fimbriae, which uniquely mediates the receptor-dependent intercellular interactions between Actinomyces and oral streptococci as well as host cells during the development of oral biofilms. The FimA adhesin is built with three IgG-like domains, each of which harbours an intramolecular isopeptide bond, previously described in several Gram-positive pilins. Genetic and biochemical studies demonstrate that although these isopeptide bonds are dispensable for fimbrial assembly, cell-cell interactions and biofilm formation, they contribute significantly to the proteolytic stability of FimA. Remarkably, FimA harbours two autonomous adhesive modules, which structurally resemble the Staphylococcus aureus Cna B domain. Each isolated module can bind the plasma glycoprotein asialofetuin as well as the polysaccharide receptors present on the surface of oral streptococci and epithelial cells. Thus, FimA should serve as an excellent paradigm for the development of therapeutic strategies and elucidating the precise molecular mechanisms underlying the interactions between cellular receptors and Gram-positive fimbriae.


Assuntos
Actinomyces/metabolismo , Adesinas Bacterianas/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Streptococcus oralis/metabolismo , Streptococcus pneumoniae/metabolismo , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Assialoglicoproteínas/metabolismo , Aderência Bacteriana , Biofilmes , Cristalografia por Raios X , Fetuínas/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/ultraestrutura , Fímbrias Bacterianas/genética , Imunoglobulina G/metabolismo , Receptores de Superfície Celular/metabolismo , Alinhamento de Sequência , Streptococcus oralis/citologia , Streptococcus oralis/genética , Streptococcus pneumoniae/citologia , Dente/microbiologia
11.
FEBS J ; 289(20): 6342-6366, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35561142

RESUMO

Streptococcus oralis is a member of the mitis group of oral streptococci and an early colonizer in dental plaque biofilm, a major cause of periodontal disease, dental caries, and other oral infections. S. oralis promotes biofilm growth by coaggregating in a mutualistic partnership with other early colonizers such as Actinomyces oris. For this cell-to-cell interaction, A. oris is known to use its sortase-dependent pilus (type 2), but whether S. oralis uses its PI-2 (pilus islet 2) pilus is still to be determined. The PI-2 pilus is predicted to have a heterodimeric structure consisting of two different protein subunits with their own location and function: the tip PitA pilin for adhesion and the backbone PitB pilin for length. Thus far, structural information remains incomplete about the role of PI-2 pili in the mutualistic mechanism between S. oralis and A. oris. We now report on the crystal structure analysis of PitA and PitB using X-ray crystallography, small-angle X-ray scattering, and molecular docking studies. Accordingly, we propose a structural model for the PI-2 pilus, wherein repeating PitB subunits are arranged head-to-tail to form the long backbone structure with PitA on the outer tip. By performing both in vitro and in vivo experiments, we examined the role played by PitA in mediating the mutualistic interaction between S. oralis and A. oris, which appears to involve the coaggregation factor CafA. We also reveal that the galactose monosaccharide is a conceivable ligand for PitA and thereby might be used to inhibit coaggregation and control oral biofilm development. DATABASE: Structural coordinates for the PitA fragment, PitA fragment TbXO4 derivative, full-length PitA, and PitB from S. oralis have been deposited at the Protein Data Bank as 7VCR, 7W7I, 7VCN, 7W6B, and 7W7I, respectively. Streptococcus pneumoniae PitB coordinates have been deposited as 7F7Y.


Assuntos
Cárie Dentária , Placa Dentária , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Galactose/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Subunidades Proteicas/metabolismo , Streptococcus oralis/metabolismo
12.
Biochimie ; 200: 140-152, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35654243

RESUMO

Several strains and species of lactic acid bacteria (LAB) are widely used in fermented foods, including dairy products and also as probiotics, because of their contribution to various health benefits in humans. Sortase enzymes decorate the bacterial cell wall with different surface proteins and pili for facilitating the interactions with host and environment for the colonization and beneficial effects. While the sortases and sortase anchored proteins from pathogens have been the prime focus of the research in the past, sortases from many non-pathogenic bacteria, including LAB strains, have attracted attention for their potential applications in vaccine delivery and other clinical interventions. Here, we report the purification and functional characterization of two sortases (housekeeping SrtA and pilus-specific SrtC) from a probiotic Lactococcus lactis. The purified sortases were found to be active against the putative LPXTG motif-based peptide substrates, albeit with differences. The in-silico analysis provides insights into the residues involved in substrate binding and specificity. Overall, this study sheds new light on the aspects of structure, substrate specificity, and function of sortases from non-pathogenic bacteria, which may have physiological ramifications as well as their applications in sortase-mediated protein bioconjugation.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Cisteína Endopeptidases , Lactococcus lactis , Probióticos , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Lactococcus lactis/enzimologia , Especificidade por Substrato
13.
Adv Exp Med Biol ; 715: 175-95, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21557064

RESUMO

Both Gram-negative and Gram-positive pathogens display a multitude of proteins and protein assemblies (pili or fimbriae) on their cell surfaces, which are often used for adherence and initiate colonization and pathogenesis. Adhesive proteins known as MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), anchored by a specific enzyme called sortase in Gram-positive bacteria, target the host's extracellular matrix proteins (ECM) like collagen, fibrinogen and fibronectin. In the past decade, structural analysis by X-ray crystallography has enhanced our understanding of the interactions between MSCRAMMs and the host ECM by revealing several novel structural features that dictate surface protein assembly and the mode of their adhesion to host tissue. The latest focus is on the recently discovered Gram-positive bacterial pili, assembly of which is assisted by yet another specific sortase. Novel features like inter- and intra-molecular isopeptide bonds that facilitate the stability of the pilins, and intra-molecular donor strand complementation to stabilize the adhesin-target interactions are specific to Gram-positive bacteria. This chapter describes and discusses the common structural details between surface proteins and pilins of Gram-positive bacteria and biological implications emanating from these structures.


Assuntos
Adesinas Bacterianas/química , Bactérias Gram-Positivas/química , Aderência Bacteriana/fisiologia , Sítios de Ligação , Cristalografia , Proteínas de Fímbrias , Bactérias Gram-Positivas/patogenicidade , Bactérias Gram-Positivas/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Ligantes , Modelos Moleculares , Estrutura Terciária de Proteína
14.
Structure ; 17(4): 611-9, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19368894

RESUMO

Cobra venom factor (CVF) is a functional analog of human complement component C3b, the active fragment of C3. Similar to C3b, in human and mammalian serum, CVF binds factor B, which is then cleaved by factor D, giving rise to the CVFBb complex that targets the same scissile bond in C3 as the authentic complement convertases C4bC2a and C3bBb. Unlike the latter, CVFBb is a stable complex and an efficient C5 convertase. We solved the crystal structure of CVF, isolated from Naja naja kouthia venom, at 2.6 A resolution. The CVF crystal structure, an intermediate between C3b and C3c, lacks the TED domain and has the CUB domain in an identical position to that seen in C3b. The similarly positioned CUB and slightly displaced C345c domains of CVF could play a vital role in the formation of C3 convertases by providing important primary binding sites for factor B.


Assuntos
C3 Convertase da Via Alternativa do Complemento/metabolismo , Convertases de Complemento C3-C5/metabolismo , Complemento C3b/metabolismo , Venenos Elapídicos/química , Animais , Sítios de Ligação/genética , C3 Convertase da Via Alternativa do Complemento/genética , Convertases de Complemento C3-C5/genética , Complemento C3b/genética , Cristalografia por Raios X , Venenos Elapídicos/genética , Venenos Elapídicos/isolamento & purificação , Venenos Elapídicos/metabolismo , Modelos Químicos , Modelos Moleculares , Ligação Proteica/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
15.
Mol Aspects Med ; 81: 100998, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34294411

RESUMO

Surface pili (or fimbriae) are an important but conspicuous adaptation of several genera and species of Gram-negative and Gram-positive bacteria. These long and non-flagellar multi-subunit adhesins mediate the initial contact that a bacterium has with a host or environment, and thus have come to be regarded as a key colonization factor for virulence activity in pathogens or niche adaptation in commensals. Pili in pathogenic bacteria are well recognized for their roles in the adhesion to host cells, colonization of tissues, and establishment of infection. As an 'anti-adhesive' ploy, targeting pilus-mediated attachment for disruption has become a potentially effective alternative to using antibiotics. In this review, we give a description of the several structurally distinct bacterial pilus types thus far characterized, and as well offer details about the intricacy of their individual structure, assembly, and function. With a molecular understanding of pilus biogenesis and pilus-mediated host interactions also provided, we go on to describe some of the emerging new approaches and compounds that have been recently developed to prevent the adhesion, colonization, and infection of piliated bacterial pathogens.


Assuntos
Fímbrias Bacterianas , Bactérias Gram-Positivas , Humanos
16.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 8): 238-245, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34341189

RESUMO

Adhesion to host surfaces for bacterial survival and colonization involves a variety of molecular mechanisms. Ligilactobacillus ruminis, a strict anaerobe and gut autochthonous (indigenous) commensal, relies on sortase-dependent pili (LrpCBA) for adherence to the intestinal inner walls, thereby withstanding luminal content flow. Here, the LrpCBA pilus is a promiscuous binder to gut collagen, fibronectin and epithelial cells. Structurally, the LrpCBA pilus displays a representative hetero-oligomeric arrangement and consists of three types of pilin subunit, each with its own location and function, i.e. tip LrpC for adhesion, basal LrpB for anchoring and backbone LrpA for length. To provide further structural insights into the assembly, anchoring and functional mechanisms of sortase-dependent pili, each of the L. ruminis pilus proteins was produced recombinantly for crystallization and X-ray diffraction analysis. Crystals of LrpC, LrpB, LrpA and truncated LrpA generated by limited proteolysis were obtained and diffracted to resolutions of 3.0, 1.5, 2.2 and 1.4 Å, respectively. Anomalous data were also collected from crystals of selenomethionine-substituted LrpC and an iodide derivative of truncated LrpA. Successful strategies for protein production, crystallization and derivatization are reported.


Assuntos
Microbioma Gastrointestinal/fisiologia , Lactobacillus/química , Lactobacillus/genética , Difração de Raios X/métodos , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X/métodos , Fímbrias Bacterianas/química , Fímbrias Bacterianas/genética
17.
Curr Res Toxicol ; 2: 116-127, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34345856

RESUMO

Inflammation is a multifaceted set of cellular communications generated against foreign infection, toxic influence or autoimmune injury. The present study investigates the anti-inflammatory effect of wheatgrass extract against the harmful impact of lipopolysaccharide (LPS) in macrophage cells, i.e., RAW 264.7 cells. Our results indicate that 5- and 7- days old wheatgrass extracts inhibit the LPS-stimulated production of nitric oxide. Moreover, wheatgrass extract significantly downregulates the mRNA expression of LPS-stimulated various pro-inflammatory markers, tumor necrosis factor-α, interleukin-6, interleukin-1ß, AP-1 and also iNOS-2 and COX-2. Our flow cytometry analyses confirmed that wheatgrass extract prevents the generation of reactive oxygen species in LPS-stimulated RAW 264.7 cells, thus arresting oxidative stress in cells. The immunoblot analyses also confirmed a significant reduction in the expression of inflammatory proteins, namely, iNOS-2 and COX-2, in wheatgrass extract-treated cells, compared to LPS-stimulated condition. The NF-κB transactivation assay further confirmed the inhibitory effect of wheatgrass extracts on the LPS-stimulated expression of NF-κB. Molecular docking based studies showed the plausible binding of two significant wheatgrass constituents, i.e., apigenin and myo-inositol with COX-2 protein, with binding energies of -10.59 kcal/mol and -7.88 kcal/mol, respectively. Based on the above results, wheatgrass may be considered as a potential therapeutic candidate for preventing inflammation.

18.
Free Radic Biol Med ; 168: 189-202, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33771600

RESUMO

Hepcidin, a circulatory hepatic peptide hormone, is associated with systemic iron homeostasis. Inflammation leads to an increase in hepcidin expression, which dysregulates body iron level. The related disorder, anemia of inflammation, is the second most prevalent anemia-related disorder worldwide. In the present study, we conducted in vitro and in vivo studies to evaluate the effect of black pepper (BP) and its major bioactive alkaloid, piperine, on anemia of inflammation. The initial in vitro study using human hepatocyte cell line, HepG2, confirmed that among different black pepper extracts: methanol (BPME), ethanol (BPEE) and aqueous (BPAE), BPME to be most effective in downregulating transcription of hepcidin gene. Further, BPME and piperine significantly downregulated hepcidin protein expression at 200 µg/ml and 100 µM concentrations, respectively. In the next phase, BPME and piperine were found to significantly attenuate BMP-6 and IL-6 induced hepcidin overexpression by downregulating the increased level of pSMAD1 and pSTAT3 proteins, respectively. For in vivo study, we first subcutaneously injected male BALB/c mice with oil of turpentine, thrice within a period of two weeks, in order to enhance the expression of hepcidin. After that, the intraperitoneal administration of BPME and piperine at 70 and 25 mg/kg body weight, respectively, on alternate days for a period of another two weeks resulted in downregulation of hepcidin overexpression in diseased mice, as confirmed by RT-PCR and immunoblot analysis. The histopathology of liver tissue confirmed increased iron bioavailability in BPME and piperine treated animals. The molecular docking-based interaction studies demonstrated the binding potential of piperine with SMAD1 and STAT3 proteins. The binding patterns supported the proposed inhibition of hepcidin activating proteins. All together, these findings suggest black pepper as a therapeutic candidate for the treatment of anemia of inflammation.


Assuntos
Anemia , Piper nigrum , Anemia/tratamento farmacológico , Anemia/genética , Animais , Proteína Morfogenética Óssea 6/genética , Hepcidinas/genética , Hepcidinas/metabolismo , Inflamação/genética , Interleucina-6/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Piper nigrum/metabolismo , Transdução de Sinais , Proteína Smad1/metabolismo
19.
Toxicol Res (Camb) ; 10(2): 169-182, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33884168

RESUMO

The black pepper, most commonly used in Indian cuisines for ages, is considered as "king of spices." The present study evaluates the anticancer potential of black pepper and its main constituent, i.e. alkaloid piperine, against human leukemia cell line, K-562 cells. Gas chromatography-mass spectrometry (GC-MS) analysis confirmed the presence of piperine in black pepper extract. The methanolic extract of black pepper (BP-M) and pure piperine (PIP) showed a strong cytotoxic effect against this cell line. Both BP-M and PIP generated apoptotic bodies in K-562 cells and caused nuclear condensation as visualized by fluorescent microscopy, which was further confirmed by flow cytometry analysis. BP-M and PIP also generated reactive oxygen species in K-562 cells as established by flow cytometry. The translation of Bax, caspase-3 and caspase-9 genes was found to be upregulated with subsequent downregulation of Bcl-2 gene. The anti-proliferative effect of both BP-M and PIP was also observed by trypan blue staining and was further confirmed by the downregulated expression of proliferating cell nuclear antigen (PCNA). The molecular docking studies showed the binding of PIP with PCNA and Bcl-2 and supported the in vitro findings. The docking studies also proposed the binding of PIP to ADP binding pocket of Apaf-1 protein. Taken together, these findings signify the anticancer potential of both black pepper and PIP, thus proposing black pepper as a potent nutraceutical for preventing the progression of chronic myeloid leukemia.

20.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 1): 8-13, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31929180

RESUMO

PitA is the putative tip adhesin of the pilus islet 2 (PI-2)-encoded sortase-dependent pilus in the Gram-positive Streptococcus oralis, an opportunistic pathogen that often flourishes within the diseased human oral cavity. Early colonization by S. oralis and its interaction with Actinomyces oris seeds the development of oral biofilm or dental plaque. Here, the PI-2 pilus plays a vital role in mediating adherence to host surfaces and other bacteria. A recombinant form of the PitA adhesin has now been produced and crystallized. Owing to the large size (∼100 kDa), flexibility and complicated folding of PitA, obtaining diffraction-quality crystals has been a challenge. However, by the use of limited proteolysis with α-chymotrypsin, the diffraction quality of the PitA crystals was considerably enhanced to 2.16 Šresolution. These crystals belonged to space group P1, with unit-cell parameters a = 61.48, b = 70.87, c = 82.46 Å, α = 80.08, ß = 87.02, γ = 87.70°. The anomalous signal from the terbium derivative of α-chymotrypsin-treated PitA crystals prepared with terbium crystallophore (Tb-Xo4) was sufficient to obtain an interpretable electron-density map via terbium SAD phasing.


Assuntos
Adesinas Bacterianas/química , Placa Dentária/química , Fímbrias Bacterianas/química , Streptococcus oralis/química , Actinomyces , Adesinas Bacterianas/genética , Adesinas Bacterianas/isolamento & purificação , Adesinas Bacterianas/metabolismo , Biofilmes , Quimotripsina/metabolismo , Cristalização , Cristalografia por Raios X , Placa Dentária/metabolismo , Placa Dentária/microbiologia , Escherichia coli , Fímbrias Bacterianas/genética , Expressão Gênica/genética , Humanos , Streptococcus oralis/patogenicidade , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA