Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 535(7613): 511-6, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27466123

RESUMO

The vast majority of systemic bacterial infections are caused by facultative, often antibiotic-resistant, pathogens colonizing human body surfaces. Nasal carriage of Staphylococcus aureus predisposes to invasive infection, but the mechanisms that permit or interfere with pathogen colonization are largely unknown. Whereas soil microbes are known to compete by production of antibiotics, such processes have rarely been reported for human microbiota. We show that nasal Staphylococcus lugdunensis strains produce lugdunin, a novel thiazolidine-containing cyclic peptide antibiotic that prohibits colonization by S. aureus, and a rare example of a non-ribosomally synthesized bioactive compound from human-associated bacteria. Lugdunin is bactericidal against major pathogens, effective in animal models, and not prone to causing development of resistance in S. aureus. Notably, human nasal colonization by S. lugdunensis was associated with a significantly reduced S. aureus carriage rate, suggesting that lugdunin or lugdunin-producing commensal bacteria could be valuable for preventing staphylococcal infections. Moreover, human microbiota should be considered as a source for new antibiotics.


Assuntos
Antibacterianos/metabolismo , Peptídeos Cíclicos/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus lugdunensis/metabolismo , Simbiose , Tiazolidinas/metabolismo , Animais , Antibacterianos/biossíntese , Portador Sadio/microbiologia , Modelos Animais de Doenças , Resistência Microbiana a Medicamentos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Microbiota/fisiologia , Nariz/microbiologia , Sigmodontinae , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/patogenicidade
2.
Artigo em Inglês | MEDLINE | ID: mdl-33106269

RESUMO

Lugdunin is the first reported nonribosomally synthesized antibiotic from human microbiomes. Its production by the commensal Staphylococcus lugdunensis eliminates the pathogen Staphylococcus aureus from human nasal microbiomes. The cycloheptapeptide lugdunin is the founding member of the new class of fibupeptide antibiotics, which have a novel mode of action and represent promising new antimicrobial agents. How S. lugdunensis releases and achieves producer self-resistance to lugdunin has remained unknown. We report that two ABC transporters encoded upstream of the lugdunin-biosynthetic operon have distinct yet overlapping roles in lugdunin secretion and self-resistance. While deletion of the lugEF transporter genes abrogated most of the lugdunin secretion, the lugGH transporter genes had a dominant role in resistance. Yet all four genes were required for full-level lugdunin resistance. The small accessory putative membrane protein LugI further contributed to lugdunin release and resistance levels conferred by the ABC transporters. Whereas LugIEFGH also conferred resistance to lugdunin congeners with inverse structures or with amino acid exchange at position 6, they neither affected the susceptibility to a lugdunin variant with an exchange at position 2 nor to other cyclic peptide antimicrobials such as daptomycin or gramicidin S. The obvious selectivity of the resistance mechanism raises hopes that it will not confer cross-resistance to other antimicrobials or to optimized lugdunin derivatives to be used for the prevention and treatment of S. aureus infections.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Staphylococcus lugdunensis , Transportadores de Cassetes de Ligação de ATP/genética , Antibacterianos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus , Tiazolidinas
3.
Angew Chem Int Ed Engl ; 58(27): 9234-9238, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31059155

RESUMO

Lugdunin, a novel thiazolidine cyclopeptide, exhibits micromolar activity against methicillin-resistant Staphylococcus aureus (MRSA). For structure-activity relationship (SAR) studies, synthetic analogues obtained from alanine and stereo scanning as well as peptides with modified thiazolidine rings were tested for antimicrobial activity. The thiazolidine ring and the alternating d- and l-amino acid backbone are essential. Notably, the non-natural enantiomer displays equal activity, thus indicating the absence of a chiral target. The antibacterial activity strongly correlates with dissipation of the membrane potential in S. aureus. Lugdunin equalizes pH gradients in artificial membrane vesicles, thereby maintaining membrane integrity, which demonstrates that proton translocation is the mode of action (MoA). The incorporation of extra tryptophan or propargyl moieties further expands the diversity of this class of thiazolidine cyclopeptides.


Assuntos
Anti-Infecciosos/síntese química , Peptídeos Cíclicos/química , Tiazolidinas/química , Alanina/química , Sequência de Aminoácidos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/farmacologia , Prótons , Estereoisomerismo , Relação Estrutura-Atividade , Tiazolidinas/síntese química , Tiazolidinas/farmacologia
4.
PLoS Pathog ; 12(8): e1005812, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27490492

RESUMO

The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84%) was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota.


Assuntos
Antibiose/fisiologia , Bacteriocinas/biossíntese , Nariz/microbiologia , Staphylococcus/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Microbiota , Reação em Cadeia da Polimerase , Espectrometria de Massas por Ionização por Electrospray
6.
PLoS Pathog ; 10(1): e1003862, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24453967

RESUMO

Colonization of the human nose by Staphylococcus aureus in one-third of the population represents a major risk factor for invasive infections. The basis for adaptation of S. aureus to this specific habitat and reasons for the human predisposition to become colonized have remained largely unknown. Human nasal secretions were analyzed by metabolomics and found to contain potential nutrients in rather low amounts. No significant differences were found between S. aureus carriers and non-carriers, indicating that carriage is not associated with individual differences in nutrient supply. A synthetic nasal medium (SNM3) was composed based on the metabolomics data that permits consistent growth of S. aureus isolates. Key genes were expressed in SNM3 in a similar way as in the human nose, indicating that SNM3 represents a suitable surrogate environment for in vitro simulation studies. While the majority of S. aureus strains grew well in SNM3, most of the tested coagulase-negative staphylococci (CoNS) had major problems to multiply in SNM3 supporting the notion that CoNS are less well adapted to the nose and colonize preferentially the human skin. Global gene expression analysis revealed that, during growth in SNM3, S. aureus depends heavily on de novo synthesis of methionine. Accordingly, the methionine-biosynthesis enzyme cysteine-γ-synthase (MetI) was indispensable for growth in SNM3, and the MetI inhibitor DL-propargylglycine inhibited S. aureus growth in SNM3 but not in the presence of methionine. Of note, metI was strongly up-regulated by S. aureus in human noses, and metI mutants were strongly abrogated in their capacity to colonize the noses of cotton rats. These findings indicate that the methionine biosynthetic pathway may include promising antimicrobial targets that have previously remained unrecognized. Hence, exploring the environmental conditions facultative pathogens are exposed to during colonization can be useful for understanding niche adaptation and identifying targets for new antimicrobial strategies.


Assuntos
Adaptação Fisiológica , Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica/fisiologia , Cavidade Nasal/microbiologia , Staphylococcus aureus/metabolismo , Adulto , Animais , Feminino , Humanos , Masculino , Metabolômica/métodos , Ratos , Sigmodontinae , Staphylococcus aureus/isolamento & purificação
7.
Proteomics ; 15(7): 1268-79, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25430637

RESUMO

FemABX peptidyl transferases are involved in non-ribosomal pentaglycine interpeptide bridge biosynthesis. Here, we characterized the phenotype of a Staphylococcus carnosus femB deletion mutant, which was affected in growth and showed pleiotropic effects such as enhanced methicillin sensitivity, lysostaphin resistance, cell clustering, and decreased peptidoglycan cross-linking. However, comparative secretome analysis revealed a most striking difference in the massive secretion or release of proteins into the culture supernatant in the femB mutant than the wild type. The secreted proteins can be categorized into typical cytosolic proteins and various murein hydrolases. As the transcription of the murein hydrolase genes was up-regulated in the mutant, they most likely represent an adaption response to the life threatening mutation. Even though the transcription of the cytosolic protein genes was unaltered, their high abundance in the supernatant of the mutant is most likely due to membrane leakage triggered by the weakened murein sacculus and enhanced autolysins.


Assuntos
Proteínas de Bactérias/metabolismo , Staphylococcus/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Deleção de Sequência , Staphylococcus/genética , Transcrição Gênica , Regulação para Cima
8.
Appl Environ Microbiol ; 81(7): 2481-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616805

RESUMO

Genetic manipulation of emerging bacterial pathogens, such as coagulase-negative staphylococci (CoNS), is a major hurdle in clinical and basic microbiological research. Strong genetic barriers, such as restriction modification systems or clustered regularly interspaced short palindromic repeats (CRISPR), usually interfere with available techniques for DNA transformation and therefore complicate manipulation of CoNS or render it impossible. Thus, current knowledge of pathogenicity and virulence determinants of CoNS is very limited. Here, a rapid, efficient, and highly reliable technique is presented to transfer plasmid DNA essential for genetic engineering to important CoNS pathogens from a unique Staphylococcus aureus strain via a specific S. aureus bacteriophage, Φ187. Even strains refractory to electroporation can be transduced by this technique once donor and recipient strains share similar Φ187 receptor properties. As a proof of principle, this technique was used to delete the alternative transcription factor sigma B (SigB) via allelic replacement in nasal and clinical Staphylococcus epidermidis isolates at high efficiencies. The described approach will allow the genetic manipulation of a wide range of CoNS pathogens and might inspire research activities to manipulate other important pathogens in a similar fashion.


Assuntos
Transferência Genética Horizontal , Genética Microbiana/métodos , Plasmídeos , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética , Staphylococcus epidermidis/genética , Transdução Genética , Proteínas de Bactérias/genética , Vetores Genéticos , Fator sigma/genética
9.
PLoS Pathog ; 8(11): e1003016, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209405

RESUMO

The stringent response is initiated by rapid (p)ppGpp synthesis, which leads to a profound reprogramming of gene expression in most bacteria. The stringent phenotype seems to be species specific and may be mediated by fundamentally different molecular mechanisms. In Staphylococcus aureus, (p)ppGpp synthesis upon amino acid deprivation is achieved through the synthase domain of the bifunctional enzyme RSH (RelA/SpoT homolog). In several firmicutes, a direct link between stringent response and the CodY regulon was proposed. Wild-type strain HG001, rsh(Syn), codY and rsh(Syn), codY double mutants were analyzed by transcriptome analysis to delineate different consequences of RSH-dependent (p)ppGpp synthesis after induction of the stringent response by amino-acid deprivation. Under these conditions genes coding for major components of the protein synthesis machinery and nucleotide metabolism were down-regulated only in rsh positive strains. Genes which became activated upon (p)ppGpp induction are mostly regulated indirectly via de-repression of the GTP-responsive repressor CodY. Only seven genes, including those coding for the cytotoxic phenol-soluble modulins (PSMs), were found to be up-regulated via RSH independently of CodY. qtRT-PCR analyses of hallmark genes of the stringent response indicate that an RSH activating stringent condition is induced after uptake of S. aureus in human polymorphonuclear neutrophils (PMNs). The RSH activity in turn is crucial for intracellular expression of psms. Accordingly, rsh(Syn) and rsh(Syn), codY mutants were less able to survive after phagocytosis similar to psm mutants. Intraphagosomal induction of psmα1-4 and/or psmß1,2 could complement the survival of the rsh(Syn) mutant. Thus, an active RSH synthase is required for intracellular psm expression which contributes to survival after phagocytosis.


Assuntos
Proteínas de Bactérias/imunologia , Regulação Bacteriana da Expressão Gênica/imunologia , Ligases/imunologia , Viabilidade Microbiana/imunologia , Neutrófilos/imunologia , Fagocitose/imunologia , Proteínas Repressoras/imunologia , Staphylococcus aureus/imunologia , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Regulação Bacteriana da Expressão Gênica/genética , Humanos , Ligases/genética , Viabilidade Microbiana/genética , Dados de Sequência Molecular , Mutação , Neutrófilos/microbiologia , Regulon/imunologia , Proteínas Repressoras/genética , Ovinos , Staphylococcus aureus/genética
10.
ISME J ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38987933

RESUMO

The human microbiome is critically associated with human health and disease. One aspect of this is that antibiotic-resistant opportunistic bacterial pathogens such as methicillin-resistant Staphylococcus aureus can reside within the nasal microbiota which increases the risk of infections. Epidemiological studies of the nasal microbiome have revealed positive and negative correlations between non-pathogenic species and S. aureus, but the underlying molecular mechanisms remain poorly understood. The nasal cavity is iron-limited and bacteria are known to produce iron-scavenging siderophores to proliferate in such environments. Siderophores are public goods that can be consumed by all members of a bacterial community. Accordingly, siderophores are known to mediate bacterial competition and collaboration but their role in the nasal microbiome is unknown. Here we show that siderophore acquisition is crucial for S. aureus nasal colonization in vivo. We screened 94 nasal bacterial strains from seven genera for their capacity to produce siderophores as well as to consume the siderophores produced by S. aureus. We found that 80% of the strains engaged in siderophore mediated interactions with S. aureus. Non-pathogenic corynebacterial species were found to be prominent consumers of S. aureus siderophores. In co-culture experiments, consumption of siderophores by competitors reduced S. aureus growth in an iron dependent fashion. Our data show a wide network of siderophore mediated interactions between the species of the human nasal microbiome and provide mechanistic evidence for inter-species competition and collaboration impacting pathogen proliferation. This opens avenues for designing nasal probiotics to displace S. aureus from the nasal cavity of humans.

11.
Nat Microbiol ; 9(1): 200-213, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110697

RESUMO

Antagonistic bacterial interactions often rely on antimicrobial bacteriocins, which attack only a narrow range of target bacteria. However, antimicrobials with broader activity may be advantageous. Here we identify an antimicrobial called epifadin, which is produced by nasal Staphylococcus epidermidis IVK83. It has an unprecedented architecture consisting of a non-ribosomally synthesized peptide, a polyketide component and a terminal modified amino acid moiety. Epifadin combines a wide antimicrobial target spectrum with a short life span of only a few hours. It is highly unstable under in vivo-like conditions, potentially as a means to limit collateral damage of bacterial mutualists. However, Staphylococcus aureus is eliminated by epifadin-producing S. epidermidis during co-cultivation in vitro and in vivo, indicating that epifadin-producing commensals could help prevent nasal S. aureus carriage. These insights into a microbiome-derived, previously unknown antimicrobial compound class suggest that limiting the half-life of an antimicrobial may help to balance its beneficial and detrimental activities.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Peptídeos Antimicrobianos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/metabolismo
12.
J Biol Chem ; 287(4): 2887-95, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22144679

RESUMO

The desperate need for new therapeutics against notoriously antibiotic-resistant bacteria has led to a quest for novel antibacterial target structures and compounds. Moreover, defining targets and modes of action of new antimicrobial compounds remains a major challenge with standard technologies. Here we characterize the antibacterial properties of triphenylbismuthdichloride (TPBC), which has recently been successfully used against device-associated infections. We demonstrate that TPBC has potent antimicrobial activity against many bacterial pathogens. Using an exometabolome profiling approach, a unique TPBC-mediated change in the metabolites of Staphylococcus aureus was identified, indicating that TPBC blocks bacterial pyruvate catabolism. Enzymatic studies showed that TPBC is a highly efficient, uncompetitive inhibitor of the bacterial pyruvate dehydrogenase complex. Our study demonstrates that metabolomics approaches can offer new avenues for studying the modes of action of antimicrobial compounds, and it indicates that inhibition of the bacterial pyruvate dehydrogenase complex may represent a promising strategy for combating multidrug-resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Bactérias/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Metaboloma , Compostos Organometálicos/farmacologia , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Compostos de Terfenil/farmacologia , Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/enzimologia , Proteínas de Bactérias/metabolismo , Compostos Organometálicos/química , Complexo Piruvato Desidrogenase/metabolismo , Compostos de Terfenil/química
13.
Int J Antimicrob Agents ; 62(5): 106965, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716578

RESUMO

BACKGROUND: Bacteriocins (of different origins) have been proposed as promising alternatives to face antimicrobial resistance-associated health problems. Isolates of the Staphylococcus genus are well-known bacteriocin producers, especially coagulase-negative species. METHODS: Twenty-eight bacteriocin-producing staphylococcal isolates were selected from a previous study for in-depth characterisation. The antimicrobial activities (AA) of the producing isolates were studied by the spot-on-lawn method and their crude cell-free supernatants (CFS) and butanol extracts (BT) were evaluated by agar diffusion assays against six indicator bacteria, including multidrug-resistant and zoonotic isolates (such as Listeria monocytogenes or methicillin-resistant Staphylococcus aureus [MRSA]). RESULTS: Six bacteriocin-producing isolates showed AA in their CFS, whereas all staphylococcal BT extracts inhibited at least one of the tested indicator bacteria. Micrococcin P1 (MP1) bacteriocin was detected by mass spectrometry in four producing isolates: Staphylococcus aureus-C5802, Staphylococcus hominis-C5835, Staphylococcus sciuri-X3041, and -X3011. Growth curves performed with CFS and BT extracts of the four MP1 producers revealed a strong AA profile against MRSA and Listeria monocytogenes, even when considerably diluted. Moreover, synergism between the BT extract of MP1-producing Staphylococcus sciuri-X3041 and several antibiotics against an MRSA indicator was observed: BT-clindamycin (> 80%) and BT-oxacillin (30%) combinations. For the BT-chloramphenicol combination, synergism and near synergism values were observed in 37% of the combinations. Competition studies revealed potent inhibitory effects of the MP1-producing isolates against the MRSA indicator. CONCLUSION: These results help to identify Staphylococcus isolates or their bacteriocins as interesting candidates for potential future applications.


Assuntos
Bacteriocinas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus , Bacteriocinas/farmacologia , Antibacterianos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Testes de Sensibilidade Microbiana
14.
Artigo em Inglês | MEDLINE | ID: mdl-37632676

RESUMO

Bacteriocins are antimicrobial peptides produced by bacteria. This study aimed to in silico analyze the presence of bacteriocin gene clusters (BGCs) among the genomes of 22 commensal Staphylococcus isolates from different origins (environment/human/food/pet/wild animals) previously identified as bacteriocin producers. The resistome and plasmidome were studied in all isolates. Five types of BGC were detected in 18 genomes of the 22 bacteriocin-producing staphylococci included in this study: class I (Lanthipeptides), class II, circular bacteriocins, the non-ribosomal-peptide lugdunin and the thiopeptide micrococcin P1 (MP1). A high frequency of lanthipeptides was detected in this collection: BGC variants of BSA, bacCH91, and epilancin15X were identified in two Staphylococcus aureus and one Staphylococcus warneri isolates from food and wild animals. Moreover, two potentially new lanthipeptide-like BGCs with no identity to database entries were found in Staphylococcus epidermidis and Staphylococcus simulans from food and wild animal, respectively. Interestingly, four isolates (one S. aureus and one Staphylococcus hominis, environmental origin; two Staphylococcus sciuri, food) carried the MP1 BGC with differences to those previously described. On the other hand, seven of the 22 genomes (~32%) lacked known genes related with antibiotic or disinfectant-acquired resistance mechanisms. Moreover, the potential carriage of plasmids was evaluated, and several Rep-proteins were identified (~73% of strains). In conclusion, a wide variety of BGCs has been observed among the 22 genomes, and an interesting relationship between related Staphylococcus species and the type of bacteriocin has been revealed. Therefore, bacteriocin-producing Staphylococcus and especially coagulase-negative staphylococci (CoNS) can be considered good candidates as a source of novel bacteriocins.

15.
Microbiol Spectr ; 11(1): e0317622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36472430

RESUMO

Biosynthetic gene clusters (BGCs) encoding the production of bacteriocins are widespread among bacterial isolates and are important genetic determinants of competitive fitness within a given habitat. Staphylococci produce a tremendous diversity of compounds, and the corresponding BGCs are frequently associated with mobile genetic elements, suggesting gain and loss of biosynthetic capacity. Pharmaceutical biology has shown that compound production in heterologous hosts is often challenging, and many BGC recipients initially produce small amounts of compound or show reduced growth rates. To assess whether transfer of BGCs between closely related Staphylococcus aureus strains can be instantly effective or requires elaborate metabolic adaptation, we investigated the intraspecies transfer of a BGC encoding the ribosomally synthesized and posttranslationally modified peptide (RiPP) micrococcin P1 (MP1). We found that acquisition of the BGC by S. aureus RN4220 enabled immediate MP1 production but also imposed a metabolic burden, which was relieved after prolonged cultivation by adaptive mutation. We used a multiomics approach to study this phenomenon and found adaptive evolution to select for strains with increased activity of the tricarboxylic acid cycle (TCA), which enhanced metabolic fitness and levels of compound production. Metabolome analysis revealed increases of central metabolites, including citrate and α-ketoglutarate in the adapted strain, suggesting metabolic adaptation to overcome the BGC-associated growth defects. Our results indicate that BGC acquisition requires genetic and metabolic predispositions, allowing the integration of bacteriocin production into the cellular metabolism. Inappropriate metabolic characteristics of recipients can entail physiological burdens, negatively impacting the competitive fitness of recipients within natural bacterial communities. IMPORTANCE Human microbiomes are critically associated with human health and disease. Importantly, pathogenic bacteria can hide in human-associated communities and can cause disease when the composition of the community becomes unbalanced. Bacteriocin-producing commensals are able to displace pathogens from microbial communities, suggesting that their targeted introduction into human microbiomes might prevent pathogen colonization and infection. However, to develop probiotic approaches, strains are needed that produce high levels of bioactive compounds and retain cellular fitness within mixed bacterial communities. Our work offers insights into the metabolic burdens associated with the production of the bacteriocin micrococcin P1 and highlights evolutionary strategies that increase cellular fitness in the context of production. Metabolic adaptations are most likely broadly relevant for bacteriocin producers and need to be considered for the future development of effective microbiome editing strategies.


Assuntos
Bacteriocinas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Bacteriocinas/genética , Bacteriocinas/metabolismo , Bactérias/genética , Staphylococcus/genética , Família Multigênica
16.
Appl Environ Microbiol ; 78(4): 1148-56, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22179253

RESUMO

Strains from various staphylococcal species produce bacteriocin peptides, which are thought to play important roles in bacterial competition and offer interesting biotechnological avenues. Many bacteriocins are secreted as inactive prepeptides with subsequent activation by specific proteolytic cleavage. By deletion of the protease gene gdmP in Staphylococcus gallinarum Tü3928, which produces the highly active lanthionine-containing bacteriocin gallidermin (lantibiotic), a strain was created producing inactive pregallidermin. On this basis, a new suicidal mutant selection system in the food-grade bacterium Staphylococcus carnosus was developed. Whereas pregallidermin was inactive against S. carnosus, it exerted potent bactericidal activity toward GdmP-secreting S. carnosus strains. To take advantage of this effect, gdmP was cloned in plasmid vectors used for random transposon mutagenesis or targeted allelic replacement of chromosomal genes. Both mutagenesis strategies rely on rare recombination events, and it has remained difficult and laborious to identify mutants among a vast majority of bacterial clones that still contain the delivery vectors. The gdmP-expressing plasmids pGS1 and pGS2 enabled very fast, easy, and reliable identification of transposon and gene replacement mutants, respectively. Mutant selection in the presence of pregallidermin caused suicidal inactivation of all clones that had retained the plasmids and allowed growth of only plasmid-cured mutants. Efficiency of mutant identification was several magnitudes higher than standard screening for the absence of plasmid-encoded antibiotic resistance markers and reached 100% specificity. Thus, the new pregallidermin-based mutant selection system represents a substantial improvement of staphylococcal mutagenesis methodology.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Genética Microbiana/métodos , Peptídeos/farmacologia , Seleção Genética , Staphylococcus/genética , Bacteriocinas/genética , Expressão Gênica , Vetores Genéticos , Peptídeos/genética , Plasmídeos
17.
Elife ; 112022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35044295

RESUMO

The pandemic of antibiotic resistance represents a major human health threat demanding new antimicrobial strategies. Multiple peptide resistance factor (MprF) is the synthase and flippase of the phospholipid lysyl-phosphatidylglycerol that increases virulence and resistance of methicillin-resistant Staphylococcus aureus (MRSA) and other pathogens to cationic host defense peptides and antibiotics. With the aim to design MprF inhibitors that could sensitize MRSA to antimicrobial agents and support the clearance of staphylococcal infections with minimal selection pressure, we developed MprF-targeting monoclonal antibodies, which bound and blocked the MprF flippase subunit. Antibody M-C7.1 targeted a specific loop in the flippase domain that proved to be exposed at both sides of the bacterial membrane, thereby enhancing the mechanistic understanding of bacterial lipid translocation. M-C7.1 rendered MRSA susceptible to host antimicrobial peptides and antibiotics such as daptomycin, and it impaired MRSA survival in human phagocytes. Thus, MprF inhibitors are recommended for new antivirulence approaches against MRSA and other bacterial pathogens.


Assuntos
Aminoaciltransferases/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Daptomicina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Fatores R/genética , Fatores R/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética
18.
Front Immunol ; 13: 1060547, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544771

RESUMO

Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease with a multifactorial aetiology that involves a strict interplay between genetic factors, immune dysregulation and lifestyle. Familial forms represent around 40% of total HS cases and show an autosomal dominant mode of inheritance of the disease. In this study, we conducted a whole-exome sequence analysis on an Italian family of 4 members encompassing a vertical transmission of HS. Focusing on rare damaging variants, we identified a rare insertion of one nucleotide (c.225dupA:p.A76Sfs*21) in the DCD gene encoding for the antimicrobial peptide dermcidin (DCD) that was shared by the proband, his affected father and his 11-years old daughter. Since several transcriptome studies have shown a significantly decreased expression of DCD in HS skin, we hypothesised that the identified frameshift insertion was a loss-of-function mutation that might be associated with HS susceptibility in this family. We thus confirmed by mass spectrometry that DCD levels were diminished in the affected members and showed that the antimicrobial activity of a synthetic DCD peptide resulting from the frameshift mutation was impaired. In order to define the consequences related to a decrease in DCD activity, skin microbiome analyses of different body sites were performed by comparing DCD mutant and wild type samples, and results highlighted significant differences between the groins of mutated and wild type groups. Starting from genetic analysis conducted on an HS family, our findings showed, confirming previous transcriptome results, the potential role of the antimicrobial DCD peptide as an actor playing a crucial part in the etio-pathogenesis of HS and in the maintenance of the skin's physiological microbiome composition; so, we can hypothesise that DCD could be used as a novel target for personalised therapeutic approach.


Assuntos
Anti-Infecciosos , Dermocidinas , Hidradenite Supurativa , Criança , Humanos , Anti-Infecciosos/metabolismo , Hidradenite Supurativa/genética , Hidradenite Supurativa/metabolismo , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Pele/metabolismo , Masculino , Feminino
19.
Mol Microbiol ; 75(4): 864-73, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20105277

RESUMO

Staphylococcal cell separation depends largely on the bifunctional autolysin Atl that is processed to amidase-R(1,2) and R(3)-glucosaminidase. These murein hydrolases are targeted via repeat domains (R) to the septal region of the cell surface, thereby allowing localized peptidoglycan hydrolysis and separation of the dividing cells. Here we show that targeting of the amidase repeats is based on an exclusion strategy mediated by wall teichoic acid (WTA). In Staphylococcus aureus wild-type, externally applied repeats (R(1,2)) or endogenously expressed amidase were localized exclusively at the cross-wall region, while in Delta tagO mutant that lacks WTA binding was evenly distributed on the cell surface, which explains the increased fragility and autolysis susceptibility of the mutant. WTA prevented binding of Atl to the old cell wall but not to the cross-wall region suggesting a lower WTA content. In binding studies with ConcanavalinA-fluorescein (ConA-FITC) conjugate that binds preferentially to teichoic acids, ConA-FITC was bound throughout the cell surface with the exception of the cross wall. ConA binding suggest that either content or polymerization of WTA gradually increases with distance from the cross-wall. By preventing binding of Atl, WTA directs Atl to the cross-wall to perform the last step of cell division, namely separation of the daughter cells.


Assuntos
Divisão Celular , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Staphylococcus aureus/citologia , Ácidos Teicoicos/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Hidrólise , N-Acetil-Muramil-L-Alanina Amidase/química , Peptidoglicano/análise , Peptidoglicano/genética , Peptidoglicano/metabolismo , Estrutura Terciária de Proteína , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biossíntese
20.
J Infect Dis ; 201(9): 1414-21, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20307206

RESUMO

The human pathogen Staphylococcus aureus successfully colonizes its primary reservoir, the nasal cavity, most likely by regulatory adaptation to the nose environment. Cotton rats represent an excellent model for the study of bacterial gene expression in the initial phases of colonization. To gain insight into the expression profile necessary for the establishment of colonization, we performed direct transcript analysis by quantitative real-time reverse-transcription polymerase chain reaction on cotton rat noses removed from euthanized animals on days 1, 4, or 10 after instillation of 2 human S. aureus nose isolates. Global virulence regulators (agr, sae) were not active in this early phase, but the essential 2-component regulatory system WalKR seems to play an important role. Accordingly, an elevated expression of walKR target genes (sak, sceD) could be detected. In agreement with previous studies that demonstrated the essential role played by wall teichoic acid (WTA) polymers in nasal colonization, we detected a strongly increased expression of WTA-biosynthetic genes. The expression profile switched to production of the adhesive proteins ClfB and IsdA at later stages of the colonization process. These data underscore the temporal differences in the roles of WTA and surface proteins in nasal colonization, and they provide the first evidence for a regulation of WTA biosynthesis in vivo.


Assuntos
Adesinas Bacterianas/biossíntese , Mucosa Nasal/microbiologia , Infecções Estafilocócicas/microbiologia , Adesinas Bacterianas/fisiologia , Animais , Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/fisiologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/fisiologia , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica/fisiologia , Genes Bacterianos/fisiologia , Humanos , RNA Bacteriano/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sigmodontinae , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiologia , Transativadores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA