Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Brain ; 147(10): 3471-3486, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38554393

RESUMO

Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical allodynia. The role of skin mechanoreceptors in the development of mechanical allodynia is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aß axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin-keratinocyte specific BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Neuropatias Diabéticas , Hiperalgesia , Queratinócitos , Sirtuína 1 , Pele , Animais , Sirtuína 1/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos , Hiperalgesia/metabolismo , Neuropatias Diabéticas/metabolismo , Pele/metabolismo , Pele/inervação , Queratinócitos/metabolismo , Camundongos Knockout , Masculino , Camundongos Endogâmicos C57BL , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Mecanorreceptores/metabolismo
2.
J Neurochem ; 168(5): 910-954, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183680

RESUMO

Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD+, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation. It describes our current level of understanding of these facets of brain energy metabolism as well as a roadmap for future research.


Assuntos
Encéfalo , Metabolismo Energético , Animais , Humanos , Encéfalo/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256175

RESUMO

Abnormal NAD+ signaling has been implicated in axonal degeneration in diabetic peripheral neuropathy (DPN). We hypothesized that supplementing NAD+ precursors could alleviate DPN symptoms through increasing the NAD+ levels and activating the sirtuin-1 (SIRT1) protein. To test this, we exposed cultured Dorsal Root Ganglion neurons (DRGs) to Nicotinamide Riboside (NR) or Nicotinamide Mononucleotide (NMN), which increased the levels of NAD+, the SIRT1 protein, and the deacetylation activity that is associated with increased neurite growth. A SIRT1 inhibitor blocked the neurite growth induced via NR or NMN. We then induced neuropathy in C57BL6 mice with streptozotocin (STZ) or a high fat diet (HFD) and administered NR or NMN for two months. Both the STZ and HFD mice developed neuropathy, which was reversed through the NR or NMN administration: sensory function improved, nerve conduction velocities normalized, and intraepidermal nerve fibers were restored. The NAD+ levels and SIRT1 activity were reduced in the DRGs from diabetic mice but were preserved with the NR or NMN treatment. We also tested the effect of NR or NMN administration in mice that overexpress the SIRT1 protein in neurons (nSIRT1 OE) and found no additional benefit from the addition of the drug. These findings suggest that supplementing with NAD+ precursors or activating SIRT1 may be a promising treatment for DPN.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Animais , Camundongos , Neuropatias Diabéticas/tratamento farmacológico , NAD , Diabetes Mellitus Experimental/complicações , Sirtuína 1 , Camundongos Endogâmicos C57BL , Nucleotídeos , Estreptozocina
4.
J Pineal Res ; 73(1): e12808, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35619550

RESUMO

ß-catenin signaling, and angiogenesis are associated with colospheroid (CSC), development. CSCs, spheroids derived from colon cancer cells, are responsible for metastasis, drug resistance, and disease recurrence. Whether dysregulating ß-catenin and inhibiting angiogenesis reduce CSC growth is unknown. In this study, the molecular mechanism of CSC growth inhibition was evaluated using a novel combination of melatonin (MLT) and andrographolide (AGP). These drugs have anticarcinogenic, antioxidant, and antimetastatic properties. CSCs were obtained from two metastatic colon cancer cell lines (HT29 and HCT-15). The viability and stemness were monitored (FDA propidium iodide staining and immunoblot for CD44, CD133, Nanog, Sox2, and Oct4). The drug combination synergistically diminished stemness via increased reactive oxygen species (ROS) levels, reduced mitochondrial membrane potential and ATP level. MLT + AGP induced cell death by inhibiting ß-catenin expression and its downregulatory signals, Cyclin D1, c-Myc. MLT + AGP treated cells exhibited translocation of phospho-ß-catenin to the nucleus and dephosphorylated-ß-catenin. Downregulation of ß-catenin activation and its transcription factors (TCF4 and LEF1) and GTP binding/G-protein related activity were found in the dual therapy. Angiogenic inhibition is consistent with downregulation of VEGF messenger RNA transcripts (VEGF189), phosphorylated VEGF receptor protein expression, matrigel invasion, and capillary tube inhibition. In vivo, the intravenous injection of MLT + AGP slowed HT29 metastatic colon cancer. Histopathology indicated significant reduction in microvascular density and tumor index. Immunohistochemistry for caspase 7, and ß-catenin found increased apoptosis and downregulation of ß-catenin signals. The mechanism(s) of decreased colospheroids growth were the inhibition of the Wnt/ß-catenin pathway. Our results provide a rationale for using MLT in combination with AGP for the inhibition of CRCs.


Assuntos
Neoplasias do Colo , Melatonina , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/metabolismo , Diterpenos , Humanos , Melatonina/metabolismo , Melatonina/farmacologia , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Via de Sinalização Wnt/genética , beta Catenina/genética
5.
Brain ; 142(12): 3737-3752, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31754701

RESUMO

In diabetic neuropathy, there is activation of axonal and sensory neuronal degeneration pathways leading to distal axonopathy. The nicotinamide-adenine dinucleotide (NAD+)-dependent deacetylase enzyme, Sirtuin 1 (SIRT1), can prevent activation of these pathways and promote axonal regeneration. In this study, we tested whether increased expression of SIRT1 protein in sensory neurons prevents and reverses experimental diabetic neuropathy induced by a high fat diet (HFD). We generated a transgenic mouse that is inducible and overexpresses SIRT1 protein in neurons (nSIRT1OE Tg). Higher levels of SIRT1 protein were localized to cortical and hippocampal neuronal nuclei in the brain and in nuclei and cytoplasm of small to medium sized neurons in dorsal root ganglia. Wild-type and nSIRT1OE Tg mice were fed with either control diet (6.2% fat) or a HFD (36% fat) for 2 months. HFD-fed wild-type mice developed neuropathy as determined by abnormal motor and sensory nerve conduction velocity, mechanical allodynia, and loss of intraepidermal nerve fibres. In contrast, nSIRT1OE prevented a HFD-induced neuropathy despite the animals remaining hyperglycaemic. To test if nSIRT1OE would reverse HFD-induced neuropathy, nSIRT1OE was activated after mice developed peripheral neuropathy on a HFD. Two months after nSIRT1OE, we observed reversal of neuropathy and an increase in intraepidermal nerve fibre. Cultured adult dorsal root ganglion neurons from nSIRT1OE mice, maintained at high (30 mM) total glucose, showed higher basal and maximal respiratory capacity when compared to adult dorsal root ganglion neurons from wild-type mice. In dorsal root ganglion protein extracts from nSIRT1OE mice, the NAD+-consuming enzyme PARP1 was deactivated and the major deacetylated protein was identified to be an E3 protein ligase, NEDD4-1, a protein required for axonal growth, regeneration and proteostasis in neurodegenerative diseases. Our results indicate that nSIRT1OE prevents and reverses neuropathy. Increased mitochondrial respiratory capacity and NEDD4 activation was associated with increased axonal growth driven by neuronal overexpression of SIRT1. Therapies that regulate NAD+ and thereby target sirtuins may be beneficial in human diabetic sensory polyneuropathy.


Assuntos
Córtex Cerebral/metabolismo , Neuropatias Diabéticas/prevenção & controle , Neurônios/metabolismo , Sirtuína 1/genética , Animais , Glicemia/metabolismo , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gânglios Espinais/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Células Receptoras Sensoriais/metabolismo , Sirtuína 1/metabolismo
6.
Int J Mol Sci ; 21(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466541

RESUMO

Diabetes predisposes to cognitive decline leading to dementia and is associated with decreased brain NAD+ levels. This has triggered an intense interest in boosting nicotinamide adenine dinucleotide (NAD+) levels to prevent dementia. We tested if the administration of the precursor of NAD+, nicotinamide mononucleotide (NMN), can prevent diabetes-induced memory deficits. Diabetes was induced in Sprague-Dawley rats by the administration of streptozotocin (STZ). After 3 months of diabetes, hippocampal NAD+ levels were decreased (p = 0.011). In vivo localized high-resolution proton magnetic resonance spectroscopy (MRS) of the hippocampus showed an increase in the levels of glucose (p < 0.001), glutamate (p < 0.001), gamma aminobutyric acid (p = 0.018), myo-inositol (p = 0.018), and taurine (p < 0.001) and decreased levels of N-acetyl aspartate (p = 0.002) and glutathione (p < 0.001). There was a significant decrease in hippocampal CA1 neuronal volume (p < 0.001) and neuronal number (p < 0.001) in the Diabetic rats. Diabetic rats showed hippocampal related memory deficits. Intraperitoneal NMN (100 mg/kg) was given after induction and confirmation of diabetes and was provided on alternate days for 3 months. NMN increased brain NAD+ levels, normalized the levels of glutamate, taurine, N-acetyl aspartate (NAA), and glutathione. NMN-treatment prevented the loss of CA1 neurons and rescued the memory deficits despite having no significant effect on hyperglycemic or lipidemic control. In hippocampal protein extracts from Diabetic rats, SIRT1 and PGC-1α protein levels were decreased, and acetylation of proteins increased. NMN treatment prevented the diabetes-induced decrease in both SIRT1 and PGC-1α and promoted deacetylation of proteins. Our results indicate that NMN increased brain NAD+, activated the SIRT1 pathway, preserved mitochondrial oxidative phosphorylation (OXPHOS) function, prevented neuronal loss, and preserved cognition in Diabetic rats.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Complicações do Diabetes/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Mononucleotídeo de Nicotinamida/uso terapêutico , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Disfunção Cognitiva/prevenção & controle , Complicações do Diabetes/prevenção & controle , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Injeções Intraperitoneais , Masculino , Memória , NAD/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Mononucleotídeo de Nicotinamida/administração & dosagem , Mononucleotídeo de Nicotinamida/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética , Sirtuína 1/metabolismo , Taurina/metabolismo , Ácido gama-Aminobutírico/metabolismo
7.
J Neurosci Res ; 97(8): 975-990, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30801823

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) is a central signaling molecule and enzyme cofactor that is involved in a variety of fundamental biological processes. NAD+ levels decline with age, neurodegenerative conditions, acute brain injury, and in obesity or diabetes. Loss of NAD+ results in impaired mitochondrial and cellular functions. Administration of NAD+ precursor, nicotinamide mononucleotide (NMN), has shown to improve mitochondrial bioenergetics, reverse age-associated physiological decline, and inhibit postischemic NAD+ degradation and cellular death. In this study, we identified a novel link between NAD+ metabolism and mitochondrial dynamics. A single dose (62.5 mg/kg) of NMN, administered to male mice, increases hippocampal mitochondria NAD+ pools for up to 24 hr posttreatment and drives a sirtuin 3 (SIRT3)-mediated global decrease in mitochondrial protein acetylation. This results in a reduction of hippocampal reactive oxygen species levels via SIRT3-driven deacetylation of mitochondrial manganese superoxide dismutase. Consequently, mitochondria in neurons become less fragmented due to lower interaction of phosphorylated fission protein, dynamin-related protein 1 (pDrp1 [S616]), with mitochondria. In conclusion, manipulation of mitochondrial NAD+ levels by NMN results in metabolic changes that protect mitochondria against reactive oxygen species and excessive fragmentation, offering therapeutic approaches for pathophysiologic stress conditions.


Assuntos
Hipocampo/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Sirtuína 3/metabolismo , Acetilação , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Mononucleotídeo de Nicotinamida/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo
8.
J Neurosci Res ; 97(4): 444-455, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30488977

RESUMO

Global cerebral ischemia that accompanies cardiac arrest is a major cause of morbidity and mortality. Protein Kinase C epsilon (PKCε) is a member of the novel PKC subfamily and plays a vital role in ischemic preconditioning. Pharmacological activation of PKCε before cerebral ischemia confers neuroprotection. The role of endogenous PKCε after cerebral ischemia remains elusive. Here we used male PKCε-null mice to assess the effects of PKCε deficiency on neurodegeneration after transient global cerebral ischemia (tGCI). We found that the cerebral vasculature, blood flow, and the expression of other PKC isozymes were not altered in the PKCε-null mice. Spatial learning and memory was impaired after tGCI, but the impairment was attenuated in male PKCε-null mice as compared to male wild-type controls. A significant reduction in Fluoro-Jade C labeling and mitochondrial release of cytochrome C in the hippocampus was found in male PKCε-null mice after tGCI. Male PKCε-null mice expressed increased levels of PKCδ in the mitochondria, which may prevent the translocation of PKCδ from the cytosol to the mitochondria after tGCI. Our results demonstrate the neuroprotective effects of PKCε deficiency on neurodegeneration after tGCI, and suggest that reduced mitochondrial translocation of PKCδ may contribute to the neuroprotective action in male PKCε-null mice.


Assuntos
Hipocampo/metabolismo , Ataque Isquêmico Transitório/metabolismo , Proteína Quinase C-épsilon/deficiência , Proteína Quinase C-épsilon/fisiologia , Animais , Encéfalo/patologia , Citosol/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Proteína Quinase C-épsilon/metabolismo , Aprendizagem Espacial , Memória Espacial
9.
Neurochem Res ; 44(10): 2280-2287, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30661231

RESUMO

Dysfunctions in NAD+ metabolism are associated with neurodegenerative diseases, acute brain injury, diabetes, and aging. Loss of NAD+ levels results in impairment of mitochondria function, which leads to failure of essential metabolic processes. Strategies to replenish depleted NAD+ pools can offer significant improvements of pathologic states. NAD+ levels are maintained by two opposing enzymatic reactions, one is the consumption of NAD+ while the other is the re-synthesis of NAD+. Inhibition of NAD+ degrading enzymes, poly-ADP-ribose polymerase 1 (PARP1) and ectoenzyme CD38, following brain ischemic insult can provide neuroprotection. Preservation of NAD+ pools by administration of NAD+ precursors, such as nicotinamide (Nam) or nicotinamide mononucleotide (NMN), also offers neuroprotection. However, NMN treatment demonstrates to be a promising candidate as a therapeutic approach due to its multi-targeted effect acting as PARP1 and CD38 inhibitor, sirtuins activator, mitochondrial fission inhibitor, and NAD+ supplement. Many neurodegenerative diseases or acute brain injury activate several cellular death pathways requiring a treatment strategy that will target these mechanisms. Since NMN demonstrated the ability to exert its effect on several cellular metabolic pathways involved in brain pathophysiology it seems to be one of the most promising candidates to be used for successful neuroprotection.


Assuntos
Encéfalo/efeitos dos fármacos , Hidrolases/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mononucleotídeo de Nicotinamida/farmacologia , Animais , Encéfalo/metabolismo , Humanos , Hidrolases/metabolismo , Mitocôndrias/metabolismo , NAD/efeitos dos fármacos , NAD/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia , Mononucleotídeo de Nicotinamida/metabolismo
10.
Neurochem Res ; 42(1): 283-293, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27518087

RESUMO

Several enzymes in cellular bioenergetics metabolism require NAD+ as an essential cofactor for their activity. NAD+ depletion following ischemic insult can result in cell death and has been associated with over-activation of poly-ADP-ribose polymerase PARP1 as well as an increase in NAD+ consuming enzyme CD38. CD38 is an NAD+ glycohydrolase that plays an important role in inflammatory responses. To determine the contribution of CD38 activity to the mechanisms of post-ischemic brain damage we subjected CD38 knockout (CD38KO) mice and wild-type (WT) mice to transient forebrain ischemia. The CD38KO mice showed a significant amelioration in both histological and neurologic outcome following ischemic insult. Decrease of hippocampal NAD+ levels detected during reperfusion in WT mice was only transient in CD38KO animals, suggesting that CD38 contributes to post-ischemic NAD+ catabolism. Surprisingly, pre-ischemic poly-ADP-ribose (PAR) levels were dramatically higher in CD38KO animals compared to WT animals and exhibited reduction post-ischemia in contrast to the increased levels in WT animals. The high PAR levels in CD38 mice were due to reduced expression levels of poly-ADP-ribose glycohydrolase (PARG). Thus, the absence of CD38 activity can not only directly affect inflammatory response, but also result in unpredicted alterations in the expression levels of enzymes participating in NAD+ metabolism. Although the CD38KO mice showed significant protection against ischemic brain injury, the changes in enzyme activity related to NAD+ metabolism makes the determination of the role of CD38 in mechanisms of ischemic brain damage more complex.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevenção & controle , Glicoproteínas de Membrana/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Animais , Células Cultivadas , Glicosídeo Hidrolases/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória
11.
Neurobiol Dis ; 95: 102-10, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27425894

RESUMO

Nicotinamide adenine dinucleotide (NAD(+)) is an essential cofactor for multiple cellular metabolic reactions and has a central role in energy production. Brain ischemia depletes NAD(+) pools leading to bioenergetics failure and cell death. Nicotinamide mononucleotide (NMN) is utilized by the NAD(+) salvage pathway enzyme, nicotinamide adenylyltransferase (Nmnat) to generate NAD(+). Therefore, we examined whether NMN could protect against ischemic brain damage. Mice were subjected to transient forebrain ischemia and treated with NMN or vehicle at the start of reperfusion or 30min after the ischemic insult. At 2, 4, and 24h of recovery, the proteins poly-ADP-ribosylation (PAR), hippocampal NAD(+) levels, and expression levels of NAD(+) salvage pathway enzymes were determined. Furthermore, animal's neurologic outcome and hippocampal CA1 neuronal death was assessed after six days of reperfusion. NMN (62.5mg/kg) dramatically ameliorated the hippocampal CA1 injury and significantly improved the neurological outcome. Additionally, the post-ischemic NMN treatment prevented the increase in PAR formation and NAD(+) catabolism. Since the NMN administration did not affect animal's temperature, blood gases or regional cerebral blood flow during recovery, the protective effect was not a result of altered reperfusion conditions. These data suggest that administration of NMN at a proper dosage has a strong protective effect against ischemic brain injury.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , NAD/efeitos dos fármacos , Mononucleotídeo de Nicotinamida/farmacologia , Animais , Lesões Encefálicas/complicações , Lesões Encefálicas/metabolismo , Isquemia Encefálica/etiologia , Isquemia Encefálica/metabolismo , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , NAD/metabolismo , Niacinamida/metabolismo
12.
J Bioenerg Biomembr ; 47(1-2): 13-31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25248415

RESUMO

Mitochondria are organelles that undergo continuous cycles of fission and fusion. This dynamic nature of mitochondria is important for cell physiology. Transgenic mouse models that express mitochondria targeted fluorescence protein, in either neurons or astrocytes, were used to examine the role of alterations in mitochondrial morphology in mechanisms of ischemic brain injury. The animals were subjected to global cerebral ischemia and allowed to recover before their brains were perfusion fixed and processed for histology and confocal microscopy. After capturing z-stack images from different hippocampal sub-regions, mitochondrial organelles were 3D reconstructed using volocity software and then their morphological parameters were calculated. The data shows cell-type specific alterations in mitochondrial dynamics following ischemia. Fission is activated in all hippocampal areas at 2 h recovery with mitochondria in CA1 becoming progressively more fragmented during the 24 h recovery period. Mitochondria in CA3 and dentate gyrus neurons started to re-fuse after 24 h of recirculation; this was even more pronounced 3 days after ischemia. Astrocytic mitochondria underwent transient fission 2 h after ischemic insult and regained their normal shape at 24 h recovery. Surprisingly, no positive correlation was found between increased nitrotyrosine levels and mitochondrial fission, particularly in ischemia resistant CA3 and dentate gyrus neurons. Our data suggest that ischemia resistant neurons are able to shift their mitochondrial dynamics toward fusion after extensive fragmentation. The re-fusion ability of fragmented mitochondria is most likely a vital feature for cell survival.


Assuntos
Isquemia Encefálica/metabolismo , Região CA3 Hipocampal/metabolismo , Giro Denteado/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Região CA3 Hipocampal/patologia , Sobrevivência Celular , Giro Denteado/patologia , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial , Neurônios/patologia
13.
BMC Neurol ; 15: 19, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25884176

RESUMO

BACKGROUND: Mitochondrial dysfunction is a hallmark of neurodegenerative diseases including Alzheimer's disease (AD), with morphological and functional abnormalities limiting the electron transport chain and ATP production. A contributing factor of mitochondrial abnormalities is loss of nicotinamide adenine dinucleotide (NAD), an important cofactor in multiple metabolic reactions. Depletion of mitochondrial and consequently cellular NAD(H) levels by activated NAD glycohydrolases then culminates in bioenergetic failure and cell death. De Novo NAD(+) synthesis from tryptophan requires a multi-step enzymatic reaction. Thus, an alternative strategy to maintain cellular NAD(+) levels is to administer NAD(+) precursors facilitating generation via a salvage pathway. We administered nicotinamide mononucleotide (NMN), an NAD(+) precursor to APP(swe)/PS1(ΔE9) double transgenic (AD-Tg) mice to assess amelioration of mitochondrial respiratory deficits. In addition to mitochondrial respiratory function, we examined levels of full-length mutant APP, NAD(+)-dependent substrates (SIRT1 and CD38) in homogenates and fission/fusion proteins (DRP1, OPA1 and MFN2) in mitochondria isolated from brain. To examine changes in mitochondrial morphology, bigenic mice possessing a fluorescent protein targeted to neuronal mitochondria (CaMK2a-mito/eYFP), were administered NMN. METHODS: Mitochondrial oxygen consumption rates were examined in N2A neuroblastoma cells and non-synaptic brain mitochondria isolated from mice (3 months). Western blotting was utilized to assess APP, SIRT1, CD38, DRP1, OPA1 and MFN2 in brain of transgenic and non-transgenic mice (3-12 months). Mitochondrial morphology was assessed with confocal microscopy. One-way or two-way analysis of variance (ANOVA) and post-hoc Holm-Sidak method were used for statistical analyses of data. Student t-test was used for direct comparison of two groups. RESULTS: We now demonstrate that mitochondrial respiratory function was restored in NMN-treated AD-Tg mice. Levels of SIRT1 and CD38 change with age and NMN treatment. Furthermore, we found a shift in dynamics from fission to fusion proteins in the NMN-treated mice. CONCLUSIONS: This is the first study to directly examine amelioration of NAD(+) catabolism and changes in mitochondrial morphological dynamics in brain utilizing the immediate precursor NMN as a potential therapeutic compound. This might lead to well-defined physiologic abnormalities that can serve an important role in the validation of promising agents such as NMN that target NAD(+) catabolism preserving mitochondrial function.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Encéfalo/patologia , Mitocôndrias/patologia , Mononucleotídeo de Nicotinamida/farmacologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Masculino , Camundongos , Camundongos Transgênicos , NAD/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Consumo de Oxigênio/fisiologia
14.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36747753

RESUMO

Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical pain. The role of skin mechanoreceptors in the development of mechanical pain (allodynia) is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aß axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.

15.
Cells ; 12(9)2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37174729

RESUMO

The mitochondrion has a unique position among other cellular organelles due to its dynamic properties and symbiotic nature, which is reflected in an active exchange of metabolites and cofactors between the rest of the intracellular compartments. The mitochondrial energy metabolism is greatly dependent on nicotinamide adenine dinucleotide (NAD) as a cofactor that is essential for both the activity of respiratory and TCA cycle enzymes. The NAD level is determined by the rate of NAD synthesis, the activity of NAD-consuming enzymes, and the exchange rate between the individual subcellular compartments. In this review, we discuss the NAD synthesis pathways, the NAD degradation enzymes, and NAD subcellular localization, as well as NAD transport mechanisms with a focus on mitochondria. Finally, the effect of the pathologic depletion of mitochondrial NAD pools on mitochondrial proteins' post-translational modifications and its role in neurodegeneration will be reviewed. Understanding the physiological constraints and mechanisms of NAD maintenance and the exchange between subcellular compartments is critical given NAD's broad effects and roles in health and disease.


Assuntos
Mitocôndrias , NAD , NAD/metabolismo , Mitocôndrias/metabolismo , Homeostase , Organelas/metabolismo , Metabolismo Energético
16.
Curr Top Biochem Res ; 23: 1-13, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36873619

RESUMO

Alcohol abuse and dependence in humans causes an extreme shift in metabolism for which the human brain is not evolutionarily prepared. Oxidation of ethanol and acetaldehyde are not regulated, making ethanol a dominating metabolic substrate that prevents the activity of enzymes from oxidizing their usual endogenous substrates. The enzymes required to oxidize ethanol across the variety of affected tissues all produce acetaldehyde which is then converted to acetate by aldehyde dehydrogenases (ALDHs). ALDHs are NAD+-dependent enzymes, and mitochondrial ALDH2 is likely the primary contributor to ethanol-derived acetaldehyde clearance in cells. Metabolism of alcohol has several adverse effects on mitochondria including increased free radical levels, hyperacetylation of mitochondrial proteins, and excessive mitochondrial fragmentation. This review discusses the role of astrocytic and neuronal mitochondria in ethanol metabolism that contributes to the acute and chronic changes in mitochondrial function and morphology, that might promote tolerance, dependence and withdrawal. We also propose potential modes of therapeutic intervention to reduce the toxicity of chronic alcohol consumption.

17.
Biochim Biophys Acta ; 1797(8): 1555-62, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20471951

RESUMO

Treatment with the omega-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) exerts cardioprotective effects, and suppresses Ca2+-induced opening of the mitochondrial permeability transition pore (MPTP). These effects are associated with increased DHA and EPA, and lower arachidonic acid (ARA) in cardiac phospholipids. While clinical studies suggest the triglyceride lowering effects of DHA and EPA are equivalent, little is known about the independent effects of DHA and EPA on mitochondria function. We compared the effects of dietary supplementation with the omega-3 PUFAs DHA and EPA on cardiac mitochondrial phospholipid fatty acid composition and Ca2+-induced MPTP opening. Rats were fed a standard lab diet with either normal low levels of omega-3 PUFA, or DHA or EPA at 2.5% of energy intake for 8 weeks, and cardiac mitochondria were isolated and analyzed for Ca2+-induced MPTP opening and phospholipid fatty acyl composition. DHA supplementation increased both DHA and EPA and decreased ARA in mitochondrial phospholipid, and significantly delayed MPTP opening as assessed by increased Ca2+ retention capacity and decreased Ca2+-induced mitochondria swelling. EPA supplementation increased EPA in mitochondrial phospholipids, but did not affect DHA, only modestly lowered ARA, and did not affect MPTP opening. In summary, dietary supplementation with DHA but not EPA, profoundly altered mitochondrial phospholipid fatty acid composition and delayed Ca2+-induced MPTP opening.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Ácidos Graxos/análise , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Fosfolipídeos/análise , Animais , Cálcio/metabolismo , Suplementos Nutricionais , Masculino , Mitocôndrias Cardíacas/química , Poro de Transição de Permeabilidade Mitocondrial , Consumo de Oxigênio , Ratos , Ratos Wistar
18.
J Neurosci Res ; 89(12): 1946-55, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21488086

RESUMO

Both acute and chronic neurodegenerative diseases are frequently associated with mitochondrial dysfunction as an essential component of mechanisms leading to brain damage. Although loss of mitochondrial functions resulting from prolonged activation of the mitochondrial permeability transition (MPT) pore has been shown to play a significant role in perturbation of cellular bioenergetics and in cell death, the detailed mechanisms are still elusive. Enzymatic reactions linked to glycolysis, the tricarboxylic acid cycle, and mitochondrial respiration are dependent on the reduced or oxidized form of nicotinamide dinucleotide [NAD(H)] as a cofactor. Loss of mitochondrial NAD(+) resulting from MPT pore opening, although transient, allows detrimental depletion of mitochondrial and cellular NAD(+) pools by activated NAD(+) glycohydrolases. Poly(ADP-ribose) polymerase (PARP) is considered to be a major NAD(+) degrading enzyme, particularly under conditions of extensive DNA damage. We propose that CD38, a main cellular NAD(+) level regulator, can significantly contribute to NAD(+) catabolism. We discuss NAD(+) catabolic and NAD(+) synthesis pathways and their role in different strategies to prevent cellular NAD(+) degradation in brain, particularly following an ischemic insult. These therapeutic approaches are based on utilizing endogenous intermediates of NAD(+) metabolism that feed into the NAD(+) salvage pathway and also inhibit CD38 activity.


Assuntos
Mitocôndrias/metabolismo , NAD/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacologia , ADP-Ribosil Ciclase 1/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Humanos , Metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial
19.
Cells ; 10(11)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34831252

RESUMO

Mitochondria are a unique intracellular organelle due to their evolutionary origin and multifunctional role in overall cellular physiology and pathophysiology. To meet the specific spatial metabolic demands within the cell, mitochondria are actively moving, dividing, or fusing. This process of mitochondrial dynamics is fine-tuned by a specific group of proteins and their complex post-translational modifications. In this review, we discuss the mitochondrial dynamics regulatory enzymes, their adaptor proteins, and the effect of acetylation on the activity of fusion and fission machinery as a ubiquitous response to metabolic stresses. Further, we discuss the role of intracellular cytoskeleton structures and their post-translational modifications in the modulation of mitochondrial fusion and fission. Finally, we review the role of mitochondrial dynamics dysregulation in the pathophysiology of acute brain injury and the treatment strategies based on modulation of NAD+-dependent deacetylation.


Assuntos
Dinâmica Mitocondrial , Degeneração Neural/metabolismo , Acetilação , Animais , Citoesqueleto/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo , Degeneração Neural/fisiopatologia , Processamento de Proteína Pós-Traducional
20.
Cells ; 10(9)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34571997

RESUMO

Acetylation is a post-translational modification that regulates the activity of enzymes fundamentally involved in cellular and mitochondrial bioenergetic metabolism. NAD+ dependent deacetylase sirtuin 3 (SIRT3) is localized to mitochondria where it plays a key role in regulating acetylation of TCA cycle enzymes and the mitochondrial respiratory complexes. Although the SIRT3 target proteins in mitochondria have been identified, the effect of SIRT3 activity on mitochondrial glucose metabolism in the brain remains elusive. The impact of abolished SIRT3 activity on glucose metabolism was determined in SIRT3 knockout (KO) and wild type (WT) mice injected with [1,6-13C]glucose using ex vivo 13C-NMR spectroscopy. The 1H-NMR spectra and amino acid analysis showed no differences in the concentration of lactate, glutamate, alanine, succinate, or aspartate between SIRT3 KO and WT mice. However, glutamine, total creatine (Cr), and GABA were lower in SIRT3 KO brain. Incorporation of label from [1,6-13C]glucose metabolism into lactate or alanine was not affected in SIRT3 KO brain. However, the incorporation of the label into all isotopomers of glutamate, glutamine, GABA and aspartate was lower in SIRT3 KO brain, reflecting decreased activity of mitochondrial and TCA cycle metabolism in both neurons and astrocytes. This is most likely due to hyperacetylation of mitochondrial enzymes due to suppressed SIRT3 activity in the brain of SIRT3 KO mice. Thus, the absence of Sirt3 results in impaired mitochondrial oxidative energy metabolism and neurotransmitter synthesis in the brain. Since the SIRT3 activity is NAD+ dependent, these results might parallel changes in glucose metabolism under pathologic reduction in mitochondrial NAD+ pools.


Assuntos
Encéfalo/metabolismo , Metabolismo dos Carboidratos/fisiologia , Glucose/metabolismo , Sirtuína 3/metabolismo , Acetilação , Animais , Astrócitos/metabolismo , Metabolismo Energético/fisiologia , Feminino , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurotransmissores/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA