Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Neuroimage ; 269: 119774, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566924

RESUMO

The popular brain monitoring method of electroencephalography (EEG) has seen a surge in commercial attention in recent years, focusing mostly on hardware miniaturization. This has led to a varied landscape of portable EEG devices with wireless capability, allowing them to be used by relatively unconstrained users in real-life conditions outside of the laboratory. The wide availability and relative affordability of these devices provide a low entry threshold for newcomers to the field of EEG research. The large device variety and the at times opaque communication from their manufacturers, however, can make it difficult to obtain an overview of this hardware landscape. Similarly, given the breadth of existing (wireless) EEG knowledge and research, it can be challenging to get started with novel ideas. Therefore, this paper first provides a list of 48 wireless EEG devices along with a number of important-sometimes difficult-to-obtain-features and characteristics to enable their side-by-side comparison, along with a brief introduction to each of these aspects and how they may influence one's decision. Secondly, we have surveyed previous literature and focused on 110 high-impact journal publications making use of wireless EEG, which we categorized by application and analyzed for device used, number of channels, sample size, and participant mobility. Together, these provide a basis for informed decision making with respect to hardware and experimental precedents when considering new, wireless EEG devices and research. At the same time, this paper provides background material and commentary about pitfalls and caveats regarding this increasingly accessible line of research.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Comunicação , Eletrodos , Eletroencefalografia/métodos , Cabeça , Tecnologia sem Fio
2.
Neuroimage ; 257: 119056, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35283287

RESUMO

Good scientific practice (GSP) refers to both explicit and implicit rules, recommendations, and guidelines that help scientists to produce work that is of the highest quality at any given time, and to efficiently share that work with the community for further scrutiny or utilization. For experimental research using magneto- and electroencephalography (MEEG), GSP includes specific standards and guidelines for technical competence, which are periodically updated and adapted to new findings. However, GSP also needs to be regularly revisited in a broader light. At the LiveMEEG 2020 conference, a reflection on GSP was fostered that included explicitly documented guidelines and technical advances, but also emphasized intangible GSP: a general awareness of personal, organizational, and societal realities and how they can influence MEEG research. This article provides an extensive report on most of the LiveMEEG contributions and new literature, with the additional aim to synthesize ongoing cultural changes in GSP. It first covers GSP with respect to cognitive biases and logical fallacies, pre-registration as a tool to avoid those and other early pitfalls, and a number of resources to enable collaborative and reproducible research as a general approach to minimize misconceptions. Second, it covers GSP with respect to data acquisition, analysis, reporting, and sharing, including new tools and frameworks to support collaborative work. Finally, GSP is considered in light of ethical implications of MEEG research and the resulting responsibility that scientists have to engage with societal challenges. Considering among other things the benefits of peer review and open access at all stages, the need to coordinate larger international projects, the complexity of MEEG subject matter, and today's prioritization of fairness, privacy, and the environment, we find that current GSP tends to favor collective and cooperative work, for both scientific and for societal reasons.


Assuntos
Eletroencefalografia , Humanos
3.
Proc Natl Acad Sci U S A ; 113(52): 14898-14903, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27956633

RESUMO

The effectiveness of today's human-machine interaction is limited by a communication bottleneck as operators are required to translate high-level concepts into a machine-mandated sequence of instructions. In contrast, we demonstrate effective, goal-oriented control of a computer system without any form of explicit communication from the human operator. Instead, the system generated the necessary input itself, based on real-time analysis of brain activity. Specific brain responses were evoked by violating the operators' expectations to varying degrees. The evoked brain activity demonstrated detectable differences reflecting congruency with or deviations from the operators' expectations. Real-time analysis of this activity was used to build a user model of those expectations, thus representing the optimal (expected) state as perceived by the operator. Based on this model, which was continuously updated, the computer automatically adapted itself to the expectations of its operator. Further analyses showed this evoked activity to originate from the medial prefrontal cortex and to exhibit a linear correspondence to the degree of expectation violation. These findings extend our understanding of human predictive coding and provide evidence that the information used to generate the user model is task-specific and reflects goal congruency. This paper demonstrates a form of interaction without any explicit input by the operator, enabling computer systems to become neuroadaptive, that is, to automatically adapt to specific aspects of their operator's mindset. Neuroadaptive technology significantly widens the communication bottleneck and has the potential to fundamentally change the way we interact with technology.


Assuntos
Aprendizado de Máquina , Interface Usuário-Computador , Adulto , Encéfalo/fisiologia , Sistemas Computacionais , Computadores , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Córtex Pré-Frontal/fisiologia
4.
Front Neurogenom ; 4: 1233722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234499

RESUMO

Brain-computer interfaces (BCI) can provide real-time and continuous assessments of mental workload in different scenarios, which can subsequently be used to optimize human-computer interaction. However, assessment of mental workload is complicated by the task-dependent nature of the underlying neural signals. Thus, classifiers trained on data from one task do not generalize well to other tasks. Previous attempts at classifying mental workload across different cognitive tasks have therefore only been partially successful. Here we introduce a novel algorithm to extract frontal theta oscillations from electroencephalographic (EEG) recordings of brain activity and show that it can be used to detect mental workload across different cognitive tasks. We use a published data set that investigated subject dependent task transfer, based on Filter Bank Common Spatial Patterns. After testing, our approach enables a binary classification of mental workload with performances of 92.00 and 92.35%, respectively for either low or high workload vs. an initial no workload condition, with significantly better results than those of the previous approach. It, nevertheless, does not perform beyond chance level when comparing high vs. low workload conditions. Also, when an independent component analysis was done first with the data (and before any additional preprocessing procedure), even though we achieved more stable classification results above chance level across all tasks, it did not perform better than the previous approach. These mixed results illustrate that while the proposed algorithm cannot replace previous general-purpose classification methods, it may outperform state-of-the-art algorithms in specific (workload) comparisons.

5.
J Neural Eng ; 17(1): 012001, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31770724

RESUMO

OBJECTIVE: The interpretation of neurophysiological measurements has a decades-long history, culminating in current real-time brain-computer interfacing (BCI) applications for both patient and healthy populations. Over the course of this history, one focus has been on the investigation of cortical responses to specific stimuli. Such responses can be informative with respect to the human user's mental state at the time of presentation. An ability to decode neurophysiological responses to stimuli in real time becomes particularly powerful when combined with a simultaneous ability to autonomously produce such stimuli. This allows a computer to gather stimulus-response samples and iteratively produce new stimuli based on the information gathered from previous samples, thus acquiring more, and more specific, information. This information can even be obtained without the explicit, voluntary involvement of the user. APPROACH: We define cognitive and affective probing, referring to an application of active learning where repeated sampling is done by eliciting implicit brain responses. In this tutorial, we provide a definition of this method that unifies different past and current implementations based on common aspects. We then discuss a number of aspects that differentiate various possible implementations of cognitive probing. MAIN RESULTS: We argue that a key element is the user model, which serves as both information storage and basis for subsequent probes. Cognitive probing can be used to continuously and autonomously update this model, refining the probes, and obtaining increasingly detailed or accurate information from the resulting brain activity. In contrast to a number of potential advantages of the method, cognitive probing may also pose a threat to informed consent, our privacy of thought, and our ability to assign responsibility to actions mediated by the system. SIGNIFICANCE: This tutorial provides guidelines to both implement, and critically discuss potential ethical implications of, novel cognitive probing applications and research endeavours.


Assuntos
Adaptação Fisiológica/fisiologia , Tecnologia Biomédica/métodos , Interfaces Cérebro-Computador , Cognição/fisiologia , Tecnologia Biomédica/tendências , Interfaces Cérebro-Computador/tendências , Humanos
6.
J Neural Eng ; 17(5): 056041, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32726757

RESUMO

OBJECTIVE: Brain-computer interface (BCI) systems read and interpret brain activity directly from the brain. They can provide a means of communication or locomotion for patients suffering from neurodegenerative diseases or stroke. However, non-stationarity of brain activity limits the reliable transfer of the algorithms that were trained during a calibration session to real-time BCI control. One source of non-stationarity is the user's brain response to the BCI output (feedback), for instance, whether the BCI feedback is perceived as an error by the user or not. By taking such sources of non-stationarity into account, the reliability of the BCI can be improved. APPROACH: In this work, we demonstrate a real-time implementation of a hybrid motor imagery BCI combining the information from the motor imagery signal and the error-related brain activity simultaneously so as to gain benefit from both sources. MAIN RESULTS: We show significantly improved performance in real-time BCI control across 12 participants, compared to a conventional motor imagery BCI. The significant improvement is in terms of classification accuracy, target hit rate, subjective perception of control and information-transfer rate. Moreover, our offline analyses of the recorded EEG data show that the error-related brain activity provides a more reliable source of information than the motor imagery signal. SIGNIFICANCE: This work shows, for the first time, that the error-related brain activity classifier compared to the motor imagery classifier is more consistent when trained on calibration data and tested during online control. This likely explains why the proposed hybrid BCI allows for a more reliable means of communication or rehabilitation for patients in need.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Eletroencefalografia , Humanos , Imaginação , Reprodutibilidade dos Testes , Interface Usuário-Computador
7.
Top Cogn Sci ; 12(3): 1012-1029, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32666616

RESUMO

A model-based approach for cognitive assistance is proposed to keep track of pilots' changing demands in dynamic situations. Based on model-tracing with flight deck interactions and EEG recordings, the model is able to represent individual pilots' behavior in response to flight deck alerts. As a first application of the concept, an ACT-R cognitive model is created using data from an empirical flight simulator study on neurophysiological signals of missed acoustic alerts. Results show that uncertainty of individual behavior representation can be significantly reduced by combining cognitive modeling with EEG data. Implications for cognitive assistance in aviation are discussed.


Assuntos
Aviação , Cognição , Eletroencefalografia , Modelos Teóricos , Pilotos , Desempenho Psicomotor , Incerteza , Adulto , Percepção Auditiva/fisiologia , Cognição/fisiologia , Feminino , Humanos , Masculino , Sistemas Homem-Máquina , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia
8.
Front Neurosci ; 14: 795, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848566

RESUMO

This study presents the integration of a passive brain-computer interface (pBCI) and cognitive modeling as a method to trace pilots' perception and processing of auditory alerts and messages during operations. Missing alerts on the flight deck can result in out-of-the-loop problems that can lead to accidents. By tracing pilots' perception and responses to alerts, cognitive assistance can be provided based on individual needs to ensure they maintain adequate situation awareness. Data from 24 participating aircrew in a simulated flight study that included multiple alerts and air traffic control messages in single pilot setup are presented. A classifier was trained to identify pilots' neurophysiological reactions to alerts and messages from participants' electroencephalogram (EEG). A neuroadaptive ACT-R model using EEG data was compared to a conventional normative model regarding accuracy in representing individual pilots. Results show that passive BCI can distinguish between alerts that are processed by the pilot as task-relevant or irrelevant in the cockpit based on the recorded EEG. The neuroadaptive model's integration of this data resulted in significantly higher performance of 87% overall accuracy in representing individual pilots' responses to alerts and messages compared to 72% accuracy of a normative model that did not consider EEG data. We conclude that neuroadaptive technology allows for implicit measurement and tracing of pilots' perception and processing of alerts on the flight deck. Careful handling of uncertainties inherent to passive BCI and cognitive modeling shows how the representation of pilot cognitive states can be improved iteratively for providing assistance.

9.
IEEE Trans Neural Syst Rehabil Eng ; 27(6): 1282-1291, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31071043

RESUMO

The movement-related cortical potential (MRCP) is a brain signal related to planning and execution of motor tasks. From an MRCP, three notable features can be identified: the early Bereitschaftspotential (BP1), the late Bereitschaftspotential (BP2), and the negative peak (PN). These features have been used in past studies to quantify neurophysiological changes in response to motor training. Currently, either manual labeling or a priori specification of time points is used to extract these features. The limitation of these methods is the inability to fully model the features. This paper proposes the segmented regression along with a local peak method for automated labeling of the features. The proposed method derives the onsets, amplitudes at onsets, and slopes of BP1 and BP2 along with time and amplitude of the PN in a typical average MRCP. To choose the most suitable regression technique a bounded segmented regression method, a change point method and multivariate adaptive regression splines were evaluated using the root-mean-square error on a dataset of 6000 simulated MRCPs. The best-performing regression technique combined with the local peak method was then applied to a smaller set of 123 simulated MRCPs. Error in onsets of BP1 and BP2 and time of PN were compared with the errors in manual labeling by an expert. The performance of the proposed method was also evaluated on an experimental dataset of MRCPs derived from electroencephalography (EEG) recorded across two sessions from 22 healthy participants during a lower limb task. The Bland-Altman plots were used to evaluate the absolute reliability of the proposed method. On experimental data, the proposed method was also compared with manual labeling by an expert. Bounded segmented regression produced the smallest error on the simulation data. For the experimental data, our proposed method did not exhibit statistically significant bias in any of the modeled features. Furthermore, its performance was comparable to manual labeling by experts. We conclude that the proposed method can be used to automatically obtain robust estimates for the MRCP features with known measurement error.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Movimento/fisiologia , Adulto , Algoritmos , Interfaces Cérebro-Computador , Simulação por Computador , Eletromiografia , Potenciais Evocados/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Modelos Teóricos , Análise de Regressão , Reprodutibilidade dos Testes
10.
J Neurosci Methods ; 309: 13-24, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30114381

RESUMO

BACKGROUND: Electroencephalography (EEG) is a popular method to monitor brain activity, but it is difficult to evaluate EEG-based analysis methods because no ground-truth brain activity is available for comparison. Therefore, in order to test and evaluate such methods, researchers often use simulated EEG data instead of actual EEG recordings. Simulated data can be used, among other things, to assess or compare signal processing and machine learning algorithms, to model EEG variabilities, and to design source reconstruction methods. NEW METHOD: We present SEREEGA, Simulating Event-Related EEG Activity. SEREEGA is a free and open-source MATLAB-based toolbox dedicated to the generation of simulated epochs of EEG data. It is modular and extensible, at initial release supporting five different publicly available head models and capable of simulating multiple different types of signals mimicking brain activity. This paper presents the architecture and general workflow of this toolbox, as well as a simulated data set demonstrating some of its functions. The toolbox is available at https://github.com/lrkrol/SEREEGA. RESULTS: The simulated data allows established analysis pipelines and classification methods to be applied and is capable of producing realistic results. COMPARISON WITH EXISTING METHODS: Most simulated EEG is coded from scratch. The few open-source methods in existence focus on specific applications or signal types, such as connectivity. SEREEGA unifies the majority of past simulation methods reported in the literature into one toolbox. CONCLUSION: SEREEGA is a general-purpose toolbox to simulate ground-truth EEG data.


Assuntos
Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Potenciais Evocados , Espectrografia do Som/instrumentação , Espectrografia do Som/métodos , Simulação por Computador , Humanos , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador/instrumentação , Software/normas
11.
Front Hum Neurosci ; 11: 78, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293184

RESUMO

We tested the applicability and signal quality of a 16 channel dry electroencephalography (EEG) system in a laboratory environment and in a car under controlled, realistic conditions. The aim of our investigation was an estimation how well a passive Brain-Computer Interface (pBCI) can work in an autonomous driving scenario. The evaluation considered speed and accuracy of self-applicability by an untrained person, quality of recorded EEG data, shifts of electrode positions on the head after driving-related movements, usability, and complexity of the system as such and wearing comfort over time. An experiment was conducted inside and outside of a stationary vehicle with running engine, air-conditioning, and muted radio. Signal quality was sufficient for standard EEG analysis in the time and frequency domain as well as for the use in pBCIs. While the influence of vehicle-induced interferences to data quality was insignificant, driving-related movements led to strong shifts in electrode positions. In general, the EEG system used allowed for a fast self-applicability of cap and electrodes. The assessed usability of the system was still acceptable while the wearing comfort decreased strongly over time due to friction and pressure to the head. From these results we conclude that the evaluated system should provide the essential requirements for an application in an autonomous driving context. Nevertheless, further refinement is suggested to reduce shifts of the system due to body movements and increase the headset's usability and wearing comfort.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA